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Resumen 

Las cargas termostáticamente controladas (TCL, por sus siglas en inglés de ‘thermostatically controlled load’) juegan un 
papel crucial en la reducción del consumo energético en los edificios. Por tanto, es esencial el desarrollo de modelos precisos 
que permitan una implementación efectiva de estrategias de control que reduzcan la demanda energética. Con este objetivo, se 
ha desarrollado un modelo que representa el comportamiento térmico de una habitación bajo la influencia de un aire 
acondicionado (AC), como punto de partida de nuestra investigación en el modelado y control de TCL. En concreto, se utilizó 
un enfoque de modelado basado en datos recogidos de una plataforma construida específicamente para este fin y un algoritmo 
diseñado para determinar los estados de operación del AC. Los resultados conseguidos, basados en las métricas del error 
cuadrático medio (RMSE, por sus siglas en inglés de ‘root mean square error’) y del error máximo absoluto (MAXAE, por sus 
siglas en inglés de ‘maximum absolute error’), demostraron la efectividad del algoritmo propuesto y del modelo para capturar la 
dinámica térmica de la habitación bajo la influencia del AC.     

Palabras clave: filtrado y suavizado, identificabilidad, identificación para control, software para identificación de sistemas, 
validación de modelos.  

Capturing Thermal Dynamics in Air-Conditioned Rooms: A Data-Driven Approach 

Abstract 

Thermostatically controlled loads (TCLs) play a crucial role in reducing energy consumption in buildings. Thus, developing 
accurate models that enable the effective implementation of energy control strategies is essential. With this goal in mind, a model 
of a room influenced by an air conditioning (AC) unit was developed as an initial starting point for our research into TCL systems 
modeling and control. In this work, a data-driven modeling approach was utilized, employing data collected from an ad-hoc data 
collection platform. In addition, an algorithm was developed to determine the AC’s operational states. The results, based on 
RMSE (Root Mean Square Error) and MAXAE (Maximum Absolute Error) metrics, demonstrate the effectiveness of the 
proposed algorithm and data-driven modeling approach in capturing the thermal dynamics of the room under the influence of 
the AC unit.     

Keywords: filtering and smoothing, identifiability, identification for control, software for system identification, model validation. 

1. Introduction

Thermostatically controlled loads (TCLs), particularly air
conditioning (AC) systems, are significant energy consumers 
in buildings, accounting for approximately 40% of total 
energy usage (“International Energy Agency,” 2023). This 
substantial consumption necessitates the implementation of 

effective energy conservation strategies in buildings. Various 
strategies have been explored and applied to achieve this 
goal, which can be grouped based on occupancy patterns and 
energy demand. 

Strategies related to occupancy patterns include night 
setbacks and optimizing start and stop times. Night setbacks 
(Guo and Nutter, 2010) involve lowering heating set-points 
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or raising cooling set-points during nighttime hours when 
occupancy is minimal, thereby conserving energy. 
Optimizing start and stop times (Canbay, 2003) ensures that 
AC systems operate only when necessary, aligning closely 
with actual occupancy patterns and the thermal needs of the 
building.  

On the other hand, strategies addressing energy demand 
include pre-cooling during off-peak periods and set-points 
changes during peak hours. Pre-cooling (Turner et al., 2015) 
takes advantages of lower energy costs by cooling the 
building during times when demand is low, reducing the need 
for cooling during peak hours. Adjusting set-point 
temperatures during peak hours (Braun and Kyoung-Ho Lee, 
2006) helps to minimize energy use and cost when energy 
demand and prices are highest.  

Based on the above, the implementation of advanced 
control strategies is essential. To this end, there are many 
approaches, such as Proportional-Integral-Derivative (PID) 
control (Soyguder et al., 2009), fuzzy logic control (Berouine 
et al., 2019), and neural network control (Li et al., 2013). It is 
worth mentioning that these methods do not require knowing 
the model of the system to implement the controller; 
however, an accurate model built beforehand can help in the 
controller design process.  

In contrast, one of the most widely used control strategies 
in energy conservation, model predictive control (MPC) 
(Moroşan et al., 2010), requires a model to implement the 
control stage. This approach is highly effective and widely 
used in energy conservation due to its predictive and 
optimization capabilities (Berouine et al., 2022). 
Consequently, MPC will be the focus in our research into 
TCL modeling and control.   

Therefore, developing a model that accurately reflects the 
system’s behavior under a wide range of operating conditions 
is crucial. There are several modeling approaches to address 
this need: white-box, black-box, and gray-box models. 
White-box models (Beghi et al., 2011) are based on a deep 
understanding of the system physics and use manufacturer-
supplied parameters to model system dynamics. These 
models, usually state space models, offer a good 
generalization capacity and are very suitable for control, 
however it is not always possible to obtain analytical 
expressions that faithfully reflect the dynamics of the system, 
so that simplifications (linearizations around set points, 
among others) are usually used, which limit both the accuracy 
of the model and its range of use. In contrast, black-box 
models, also called data-driven models (Afram and Janabi-
Sharifi, 2015), are developed using experimental input-
output data and fitting mathematical functions to these data. 
Although they can be very accurate, data-driven models often 
lack the physical meaning of the system under analysis. Gray-
box models (Gomez-Ruiz et al., 2024; Liu et al., 2022) 
provide a balanced approach, combining the physical 
understanding of white-box models with the data-driven 
accuracy of black-box models. These models use the physics-
based structure of white-box models and incorporate 
measured data to estimate model parameters, resulting in 
better accuracy and generalization capabilities compared to 
purely white-box or black-box approaches.   

In this paper, the modeling of a room’s thermal behavior 
influenced by a commercial AC unit using a data-driven 
modeling approach is presented. This approach was chosen 

with a view to designing a modeling methodology that would 
work well for systems whose analytical performance, based 
on equations reflecting their dynamics, is unknown. 
Additionally, it is considered the fastest way to develop the 
model since it relies solely on experimental data, which were 
collected using an ad-hoc (designed by the authors) data 
collection platform. However, a significant challenge 
emerged because the AC’s operational states at each 
sampling interval were unknown due to inaccessibility of the 
machine's internal thermostat readings. To address this 
problem, an algorithm that detects the AC’s operational states 
based on collected experimental data was developed.  

Based on everything discussed above, the main 
contributions of this paper are the algorithm for detecting the 
AC’s operational states and the development of the room’s 
thermal behavior model.  

The remainder of this paper is organized as follows: 
Section 2 presents an overview of the system under analysis, 
the proposed experimental setup, and the experimental data. 
Section 3 outlines the proposed algorithm for determining the 
AC’s operational states. Section 4 details the room’s thermal 
behavior modeling. Section 5 discusses the results and 
evaluates the performance of the models and the proposed 
algorithm. Finally, Section 6 summarizes the key 
contributions and suggests potential future work to enhance 
TCL system modeling and control.  

2. Materials and methods 

In this work, the thermal behavior of a room cooled by an 
AC unit within a controlled environment is studied. The 
experiment was conducted in a room with dimensions of 4 
meters long, 3 meters wide and 3 meters high. The AC unit 
used is the Hisense® APC12Q model (“Air conditioning unit 
Hisense APC12QC,” 2024), a commercially available unit 
designed for residential and small commercial applications 
with a power consumption of 1340W in refrigeration mode. 
Additionally, a data collection platform was developed to 
collect and analyze data during the experiment. This platform 
includes temperature sensors (“MCP9808,” 2024) to measure 
both indoor and exterior room temperatures, a data 
acquisition board (“ESP32,” 2024) and remote control 
switches (“SONOFF RFR2,” 2024) to adjust the AC 
operating mode. All these elements communicate with 
MATLAB®, where the data is collected and analyzed. The 
experimental setup, comprising the room, the AC unit and the 
data collection platform with all elements involved, is shown 
in Figure 1.  

 
Figure 1: Experimental setup modeling the AC unit. 
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Using the proposed experimental setup, the AC unit was 
tested under various operating conditions, and both the 
indoor and exterior room temperature were measured. The 
experiment started at 10 am and finished at 4 pm, consisting 
of two consecutive refrigeration cycles. In each cycle, the AC 
initially operated in on mode for two hours, followed by a 
transition to off mode, which was maintained for one hour. 
Both exterior and indoor room temperatures were measured 
at intervals of 10 seconds. As depicted in Figure 2, the 
exterior temperature exhibited a progressive increase from 
morning until afternoon. Regarding the indoor temperature, 
the peaks observed around the indoor setpoint temperature, 
approximately 287K, indicate the influence of the AC 
thermostat. These peaks represent the operational state (ON 
or OFF) of the AC during its on mode. 

 

 
Figure 2: Indoor temperature (blue) and exterior temperature (magenta) 
measured during the experiment.     

However, the sequence of the AC’s operational states 
during the experiment is unknown because access to the 
thermostat readings was not possible, a limitation often 
encountered with commercial AC units. Therefore, to enable 
the proposed modeling approach, it is necessary to develop 
an algorithm capable of determining the sequence of the 
AC’s operational states.   

3. AC Operational State Detection Algorithm (AC-
OSDA) 

In this section, the algorithm capable of detecting the AC’s 
operational states (AC-OSDA) is introduced. Employing a 
systematic approach, the AC-OSDA is represented by a 
comprehensive flowchart outlining the sequential steps of the 
proposed algorithm, as illustrated in Figure 3. This flowchart 
guides the determination of the AC’s operational states based 
on the indoor temperature data presented in Figure 2.  

The algorithm begins by collecting the indoor room 
temperature data denoted as Tie and then filters it using (1).  

 

Tief(k) = 
1

N
 Tie(k-i)

N-1

i=0

 (1) 

 
Where Tief represents the filtered indoor room temperature 

at each sampling interval k. Here, k is an element of the set 
{1, 2, …, N}, with N being the total number of samples in the 
experiment.  

Subsequently, the algorithm calculates the difference 
between the current and the previous values of Tief as 
indicated in (2):   

 
ΔTief(k) = Tief(k+1) - Tief(k) (2) 

 
By observing values of ΔTief close to zero, the algorithm 

identifies peaks in the indoor temperature signal. To 
accomplish this, the algorithm evaluates if the value of ΔTief 
falls within the range -Δo < ΔTief(n) < Δo, where Δo 
represents the limit value of ΔTief around zero used for 
identifying peaks in the signal.  

 

Figure 3: Flowchart illustrating the steps of AC-OSDA. 

Upon identifying a peak, the algorithm determines the sum 
of ΔTief taken for No values before and after the peak, 
following (3):  

 

SBP =  ΔTief(n-i)

No

i=1

 

SAP =  ΔTief(n+i)

No

i=1

 

(3) 

 
Where SBP represents the sum of ΔTief values before the 

peak, and SAP represents the sum of ΔTief values after the 
peak. Here, n is an element of the set {No+1, No+2, …, N-
No}.  

Based on the values of SBP and SAP, the algorithm 
discerns whether the peak corresponds to a local minimum or 
maximum. For instance, if the value of the sum before the 
peak is negative and after the peak is positive, it indicates a 
local minimum. In this case, the AC’s operational state is set 
to 0. Conversely, for a local maximum, the AC’s operational 
state is set to 1. Finally, the algorithm concludes its 
execution.  

The performance of applying AC-OSDA to indoor room 
temperature data mainly depends on the values of Δo and No, 
as shown in Figure 3. A procedure for assessing the 
algorithm’s performance was proposed.  
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Figure 4: Comparison between the indoor temperature without filtering 
(blue) and the AC’s operational states provided by AC-OSDA (magenta), 
considering the following parameter settings: (a) No = 6 and Δo = ±0.05, (b) 
No = 12 and Δo = ±0.05, and (c) No = 18 and Δo = ±0.05.    

First, one of the parameters was fixed, and different values 
were set for the other. Next, the same procedure was applied 
in reverse. The values for the parameters were logically set 
after observing experimental data. For Δo, the values were 
selected based on the mean values of ΔTief around zero when 
a peak is observed. For No, the values were chosen to 
represent the values of ΔTief one minute, two minutes, and 
three minutes before and after the peak. The results of these 
simulations are presented in Figure 4 and 5. 

In the first three cases, the value of Δo was set to ±0.05, 
while the value of No was set to 6, 12, and 18, as can be seen 
in Figure 4(a), Figure 4(b), and Figure 4(c), respectively. It is 
evident that increasing the value of No does not improve the 
detection of the peaks, particularly the detection of the 
minimum peaks. Based on the main conclusion drawn from 
the results shown in Figure 4, in the next three simulations 
the value of No was set to 6, and the value of Δo was initially 
set to ±0.01, then adjusted to ±0.05, and finally to ±0.1, as 
can be seen in Figure 5(a), Figure 5(b), and Figure 5(c), 
respectively. It can be observed that the performance in 
Figure 5(a) shows a delay in the detection of the operational 
states, while in Figures 5(b) and 5(c), the delay is minimum. 

  
Figure 5: Comparison between the indoor temperature without filtering 
(blue) and the AC’s operational states provided by AC-OSDA (magenta), 
considering the following parameter settings: (a) No = 6 and Δo = ±0.01, (b) 
No = 6 and Δo = ±0.05, and (c) No = 6 and Δo = ±0.1.    

The results provided in Figure 5(c) are considered the best 
since the range of evaluation is wider than in the results 
shown in Figure 5(b) with approximately the same 
performance. Therefore, in the proposed study, the values of 
Δo and No were chosen according to a logical interpretation 
of the results shown in Figures 4 and 5. Based on this, the 
parameter setting with No = 6 and Δo = ±0.1 was used for the 
data-driven modeling approach presented in the next section. 

4. Data-driven modeling 

In this section, a data-driven modeling approach is 
employed to accurately capture the temperature dynamics 
within the room influenced by the AC unit. Specifically, two 
distinct mathematical models were identified based on 
experimental data: a state-space (SS) model and an 
AutoRegressive with eXogenous inputs (ARX) model. These 
models were chosen because they provided excellent results 
in the ranking established by (Afram and Janabi-Sharifi, 
2015) after developing different types of models using 
experimental data. The input and output variables considered 
in the modeling process are: the external temperature, 
gathered by the data collection platform outlined in Section 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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2, and the AC’s operational states, determined by the 
algorithm presented in Section 3, as inputs; and the indoor 
temperature as output, thus configuring a multiple-input, 
single-output (MISO) model. Both model representations, 
i.e., the SS and ARX models, were identified using 
MATLAB®. Model order selection followed the guidelines 
provided in (Afram and Janabi-Sharifi, 2015), aiming to keep 
the model order low unless increasing it provided significant 
benefits. To address the issue of overfitting, 80% of the 
dataset was allocated for modeling, while the remaining 20% 
was reserved for validation.  

4.1. SS identified model 

The SS identified model describes the room’s thermal 
behavior in terms of its states, inputs and outputs. The SS 
identified model equations are given by (4):  

 
x(k+1) = A·x(k)+B·u(k)+K·e(k) 

y(k) = C·x(k) + D·u(k)+e(k) 
(4) 

 
Where, for each sampling time k, x(k) represents the state 

vector, composed of the variables in the energy storage 
elements in the room; u(k) represents the input vector, 
composed of the external temperature and the AC’s 
operational states; y(k) represents the output vector; e(k) 
represents the disturbance vector, taking into account system 
inaccuracies, variations in matrix values and external 
disturbances.  

The algorithm used in MATLAB (“n4sid,” 2024), 
provided state-space matrices A, B, C, D, and K, along with 
their involved coefficients. The SS matrices of the identified 
model are given as follows (5) - (9):  

 

A= ቂ
0.9769 -0.0328
-0.0337 0.8202

ቃ (5) 

  

B= 4.7447⋅10-4 -0.0022
0.0028 -6.7910 ⋅10-4൨ (6) 

  
C=[84.4214 0.3713] (7) 

  
D=[0 0] (8) 

  

K= ቂ
0.008623
-0.002862

ቃ (9) 

  
By analyzing the state matrix, A, it was concluded that the 

proposed SS identified model for the room’s thermal 
behavior is a second-order model, involving two states 
variables that may represent the indoor temperature and the 
wall room temperature. It is worth nothing that the 
experimental data involved only the indoor temperature to 
represent the system’s dynamics, while this model involves 
two variables. This allows for a better characterization of the 
system. 

4.2. ARX model 

The ARX model captures the room’s thermal behavior 
using input-output data. The ARX model equation, with the 
involved polynomials A(z), B1(z), and B2(z), is expressed in 
(10):  

 

y(k) = A(z)·y(k) + B1(z)·u1(k) + B2(z)·u2(k) (10) 
 
Where, for each sampling time k, y(k) denotes the output 

while u1(k) and u2(k) represent the input variables. These 
inputs are the same as in the SS identified model.    

The polynomials of the ARX model for the output y(k) 
were identified using (“arx,” 2024), and they are given as 
follows (11) - (13):  

 
A(z) = 1-0.9721z-1-0.1143z-2+0.09674z-3+ 

0.007063z-4 
(11) 

B1(z)=0.02555+0.01548z-1+0.007359z-2- 
0.05075z-3 

(12) 

B2(z)=-0.09051-0.03316z-1-0.03325z-2-0.0237z-3 (13) 
 
In that case, the order of the system is determined by 

observing the highest order of the polynomials in the model, 
therefore it is concluded that the ARX model is of fourth-
order.  

5. Results and Discussion 

In this section, the simulated responses of the room’s 
thermal behavior model using both representations, i.e., the 
SS model and ARX model, are presented. Additionally, the 
visual comparison with the measured response is provided 
and analyzed. To evaluate the accuracy of the model in both 
representations, two analytical metrics were used: RMSE 
(Root Mean Square Error) and MAXAE (Maximum 
Absolute Error).  

 
Figure 6: Measured (blue) and simulated (orange) responses of room’s 
thermal behavior model: (a) SS identified model, and (b) ARX model.    

As depicted in Figure 6, both models demonstrated a 
reasonable level of accuracy in predicting the indoor room 
temperature. This also indicates that the AC’s operational 
states provided by AC-OSDA were appropriate. However, 
common challenges were observed in both models, such as 
accurately capturing the dynamics during the initial 

(a) 

(b) 
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refrigeration cycle and predicting the settling behavior when 
the AC transitions to the off mode. This may because there 
are fewer data points in these regions compared to the regions 
where the thermostat frequently changes the operational state 
of the AC. According to the analytical metrics presented in 
Table 1, both models are evaluated based on their RMSE and 
MAXAE values, expressed in K.  

Table 1: RMSE and MAXAE for the simulation of the SS and ARX models.  

Accuracy 
index 

Model 
In this 
work 

(Afram and Janabi-
Sharifi, 2015) 

RMSE 
SS 1.0489K 0.716K 

ARX 1.0020K 0.777K 

MAXAE 
SS 3.1842K 3.438K 

ARX 3.4753K 4.273K 
 
It is worth noting that lower values indicate better 

performance for both metrics. The RMSE value for the ARX 
model is lower compared to the SS identified model, 
suggesting that the ARX model performs slightly better in 
terms of overall accuracy. While the MAXAE value is higher 
for the ARX model, it is essential to consider that MAXAE 
represents a single point of error, a challenge observed in 
both models. Additionally, the RMSE and MAXAE values 
obtained in this work are consistent with those reported in 
similar studies (Afram and Janabi-Sharifi, 2015), as shown in 
Table 1.   

6. Conclusion 

In this work, the thermal behavior model of a room 
influenced by an AC unit was identified and represented 
using both SS and ARX models. The AC’s operational states 
(unknown a priori) were effectively predicted using the 
proposed AC-OSDA. Evaluation of model performance, 
employing RMSE and MAXAE metrics, indicates that both 
identified models achieved a satisfactory level of accuracy, 
with the ARX model demonstrating slightly higher precision 
compared to the SS identified model. These findings, 
consisting with existing literature, validate the efficacy of the 
models and the employed algorithm.  

The methodology used in this work represents the starting 
point for our research in TCL modeling and control, with 
potential for further improved. This includes testing the 
proposed algorithm with new datasets involving more data 
points. Future work should prioritize improving the 
interpretability of the model and establishing a procedure 
applicable to a broader range of TCL systems. To this end, 
the authors are currently developing a novel system modeling 
procedure that incorporates a gray-box modeling approach, 
suitable for various TCL systems. Of course, the ultimate 
goal of the research is to have the best possible model to 
apply model-based control techniques.  
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