
Web-based Interface to control autonomous robotic systems in hospital scenarios

Tirado-Bou, Amparo.a,∗, Marı́n-Prades, Raúl.a, Sanz, Pedro J.a,b

aUniversitat Jaume I de Castellón
bValgrAI—Valencian Graduate School and Research Network for Artificial Intelligence (Valencia, Spain)

To cite this article: Tirado-Bou, Amparo, Marı́n-Prades, Raúl., Sanz, Pedro J. 2024. Web-based Interface to control 
autonomous robotic systems in hospital scenarios.
Jornadas de Automática, 45. https://doi.org/10.17979/ja-cea.2024.45.10878

Resumen

Desarrollamos una interfaz gráfica para un robot de apoyo autónomo que asiste al personal de salud en el cuidado de
pacientes infecciosos, como los de COVID-19. Usando el Framework React, la interfaz está en fase experimental y ha sido
probada en un robot real. Su objetivo principal es permitir el control remoto de motores y la visualización de datos Lidar,
compatible con cualquier configuración del Sistema Operativo de Robots (ROS) a través de ROSbridge, que utiliza websockets
para exponer los canales de comunicación de ROS. El sistema utiliza roslibjs, React y React Three Fiber, aprovechando WebGL
y Three.js para una integración fluida en la web. La interfaz de usuario incluye elementos interactivos para las transmisiones de
cámara, control de motores y visualización de datos Lidar. Esto mejora las capacidades de ROS más allá de las redes locales,
abriendo nuevas aplicaciones para la robótica remota. El módulo de control forma parte de un sistema integral para gestionar
tareas relacionadas con el cuidado de pacientes.

Palabras clave:
Robots Móviles Autónomos, Telemedicina, Fusión de información y sensores, Telerobótica, Robots móviles, Sistemas de
Control de Movimiento, Trabajo en entornos reales y virtuales, Interacción multimodal, Adquisición de datos de sensores
remotos, Programación y Visión

Web-based Interface to control autonomous robotic systems in hospital scenarios

Abstract

A graphical interface has been developed for an autonomous support robot to assist health personnel with the care of infec-
tious patients, such as those with COVID-19. Using the React Framework, the interface design is in the experimental phase,
tested on a real robot. Its main goal is to enable remote motor control and Lidar data visualization, compatible with any Robot
Operating System (ROS) setup via ROSbridge, which uses websockets to expose ROS communication channels. The system
leverages roslibjs, React, and React Three Fiber, utilizing WebGL and Three.js for smooth web integration. The user interface
includes interactive elements for camera feeds, motor control, and Lidar data visualization. This enhances ROS capabilities
beyond local networks, fostering new remote robotics applications. The control module is part of a comprehensive system for
managing tasks related to patient care.

Keywords: Autonomous Mobile Robots, Tele-medicine, Information and sensor fusion, Telerobotics, Mobile robots, Motion
Control Systems, Work in real and virtual environments, Multi-modal interaction, Remote sensor data acquisition,
Programming and Vision

∗Autor para correspondencia: atirado@uji.es
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

https://doi.org/10.17979/ja-cea.2024.45.10878
https://creativecommons.org/licenses/by-nc-sa/4.0/


Tirado-Bou, Amparo. et al. / Jornadas de Automática, 45 (2024)

1. Introduction

In recent years and especially after the appearance of
COVID-19, we have seen how various initiatives have prolif-
erated to provide support in hospital environments so that the
exposure of healthcare personnel to various sources of con-
tagion could be minimized. We need to work together with
health professionals to define their needs and to what extent
we can help them in the best possible way.

The implementation of autonomous robotic technologies
in isolated hospital environments has emerged as an innova-
tive solution to address various challenges related to health-
care.

This study provides an advanced interface designed to em-
power users to interact with them, whether it’s for mission
planning, remote operation, data analysis, or maintenance pur-
poses. They leverage cutting-edge technologies in human-
computer interaction, data visualization, and artificial intel-
ligence to provide a seamless and intuitive user experience.
Recent advances in the design, development, and applica-
tion of autonomous robots in hospital contexts, particularly
in restricted access areas or isolated settings such as isolation
rooms and intensive care units.

The current works are focused on the direct interaction
with the robotic system, with a user profile for which the sys-
tem is prepared. For example, in (Arce et al., 2022), the type
of interaction allowed by the GUI is seen in its tests. In other
works, such as (Wang et al., 2021), a specific aspect like visual
and audio data is also focused on.

In the work presented by (Szafr and Szafr, 2021), it is al-
ready taken into account that as robot capabilities advance,
human-robot interfaces will increasingly need to support such
data-centric activities.

Our objective is for the final interface to allow direct inter-
action with the robot, the management of its tasks by health-
care personnel, and for it to be intuitive for the patient.

To avoid focusing our interface on direct interaction with
the robot, it was decided to create a modular framework with
which to work on the different aspects of the interface.

In this paper, a modular framework designed to revolu-
tionize patient care and monitoring in isolated hospital envi-
ronments is presented. This framework enables the seamless
control of autonomous robots that are capable of manipulat-
ing their surroundings to assist in critical healthcare tasks, that
is specifically tailored to enhance patient monitoring, manage
vital signs, and facilitate communication between patients and
healthcare professionals, ensuring efficient and effective med-
ical care even in the most isolated settings.

The modular design allows for easy integration and scala-
bility, accommodating various robot types and functionalities
based on specific hospital needs, supports multiple modules,
each dedicated to specific tasks such as patient monitoring,
environmental interaction, and communication. Presented in
Section 3

2. React Framework

At the beginning of the project, it was decided to use
Python to develop the first version of the interface, and a func-
tional version was developed using the Kivy library.

The robot development was started at the project’s incep-
tion, and a quick and agile interface was needed to start vali-
dating the hardware components.

2.1. Languages and frameworks

Developing a graphical user interface (GUI) for robotics
can be accomplished using various programming languages
and frameworks. Some of the most popular options and ex-
amples are provided below:

1. Python-Based Frameworks, In (Jensen et al., 2014)
presents FroboMind1 a robot control system software
platform designed for robotics research and innova-
tion. Then (Velamala et al., 2017) presents UI for con-
trol of the WAM-V (Wave Adaptive Modular Vehicle)
Autonomous Surface Vehicle a GUI for control of an
autonomous surface vehicle, Qt, when combined with
ROS, allows for the creation of a powerful GUI for con-
trolling robots and autonomous vehicles.

2. JavaScript and Web Technologies
3. C++ Frameworks, (Sousa et al., 2024) presents a frame-

work for the Robot@Factory 4.0
4. Java Frameworks
5. C# and .NET Frameworks
6. Cross-Platforms Developers Tools as Unity, for exam-

ple in (Varela-Aldás et al., 2024) describes an open-
access simulator for aerial robotic manipulators

A development framework needs to be employed that en-
ables the creation of a multichannel interface (see Figure 1),
integrating task management, patient care, and healthcare per-
sonnel coordination with robotic devices. Programmable as-
sistance for healthcare staff and the management of medical
sensors should be facilitated by this framework, allowing for
comprehensive monitoring of both patients and autonomous
robots.

Various features and capabilities are offered by these lan-
guages and frameworks, which can be leveraged to create ef-
fective and efficient robotic GUIs, depending on the specific
requirements and constraints of the project.

After a stable version that allowed continued hardware
testing was achieved, the requirements that the interface
should meet were reviewed.

Once the system control module is functional and allows
the progress of tests with the developed prototype, it has been
integrated into a complete system that allows the management
of the robot’s tasks, the monitoring of patients, and facilitates
communication with healthcare personnel in complete safety.

A GUI must refer to a system or platform that allows in-
teraction across multiple channels or mediums (smartphones
(iOS and Android), tablets, PCs).

1https://frobomind.org/

https://frobomind.org/


Tirado-Bou, Amparo. et al. / Jornadas de Automática, 45 (2024)

Table 1: Software platform for robotics systems.
GUI ROS Components Multichannel

FroboMind Python ✓ C++ NO
Robot@Factory Rviz ✓ C++ NO
Aerial Robotic Unity ✓ Python NO
WAM-V Qt Creator ✓ C++ NO

2.2. Advantages and disadvantages of React

• React is a powerful JavaScript library for building user
interfaces, allowing developers to create encapsulated
components that manage their own state and logic. This
modularity is ideal for complex systems where differ-
ent parts of the application (such as patient monitoring,
robot control, and communication interfaces) can be de-
veloped, tested, and maintained independently.

• React promotes the creation of reusable UI components,
ensuring consistency and reducing development time.
Components like vital sign monitors, alert systems, and
communication interfaces can be reused across the ap-
plication.

• React’s Virtual DOM improves performance by mini-
mizing direct manipulation of the actual DOM, leading
to faster updates and rendering. This is crucial for real-
time updates, such as displaying live patient vitals or
robot states, ensuring a smooth and responsive user ex-
perience.

• With a vast ecosystem and strong community support,
React offers numerous libraries and tools that accelerate
development. For example, libraries like Roslib, React
Router, and Material-UI can be seamlessly integrated to
enhance functionality and user experience.

• React allows the same codebase to be used for build-
ing mobile applications through React Native, ensuring
a consistent interface across desktops, tablets, and mo-
bile phones, which is beneficial for healthcare providers
accessing the system from various devices.

(a) Iphone view (b) Ipad view

Figure 1: Detail patient page

• React’s ease of integration with backend services
through APIs is essential for managing data. It facil-
itates communication with robot control systems, pa-
tient monitoring devices, and hospital databases, ensur-
ing smooth integration with backend services.

• Finally, React supports modern JavaScript and Type-
Script, enabling developers to use the latest language
features and practices, ensuring robust, maintainable,
and future-proof code.

Here, a series of works implementing monitoring and con-
trol systems using React and Rosbridge are presented.

In (Ivanov et al., 2021), a tool for monitoring and visual-
ization of Robot Operating System (ROS) data in a standard
browser is presented. It is compatible with ROS and utilizes
ReactJS to visualize topic data.

An example of a web interface developed by S. Nukala,
M. Sugaya, and S. Nagarajan (Nukala et al., 2023) is show-
cased, developed in React and using the rosbridge library to
connect with the topics running on the server.

3. Interface Modules

1. Dashboard Module: Centralizes all the system’s func-
tionalities and adapts to the profile of the connected
user.

(a) Patient: gives access to the list of patients and the
file of the selected patient

(b) Communications: allows the start of a video call
with health personnel

(c) Robots: allows us access to the list of available
robots, their metrics and planning

(d) Tasks: allows us to manage planned tasks and see
their status

2. Task Module: Allows users to define complex missions
and tasks for the robotic system

(a) Task scheduling and mission planning
(b) Diagnostic tools for troubleshooting and debug-

ging.
(c) Graphical interface for defining waypoints, areas

to explore, and specific tasks to perform.
(d) Support for multi-agent coordination and collabo-

ration.
(e) Integration with GIS data for environmental map-

ping and route optimization.
(f) Simulation mode for testing and validating mis-

sions before deployment.
3. Teleoperation Module: Enables remote control of the

robotic system for manual intervention or supervision,
(see Figure 2)



Tirado-Bou, Amparo. et al. / Jornadas de Automática, 45 (2024)

(a) Live video streaming from onboard cameras with
low-latency feedback.

(b) Virtual joystick or gamepad controls for intuitive
navigation.

(c) Fine-grained control over robotic actuators and
manipulators.

(d) Emergency stop and safety features for overriding
autonomous behaviors.

Figure 2: Teleoperation Module.

4. Data Visualization Module: Provides tools for analyz-
ing and visualizing data collected by the robotic system.

(a) 3D reconstruction.

(b) Point cloud visualization for mapping and local-
ization. (see Figure 3).

(c) Integration with machine learning models for real-
time object detection and classification.

Figure 3: Point cloud visualization.

5. Patient Module: for managing patient data and connect-
ing to sensors for health monitoring.

(a) Patient Listing: Display a list of patients.

(b) Patient Details: View details of a selected patient.

(c) Delete Patient: Remove a patient from the list.

(d) Sensor Data Connection: Connect to sensors and
display health monitoring data.

4. Technical Overview

Figure 4: Overall system description.

In the rapidly advancing field of web and robotic technolo-
gies, a dynamic and evolving architecture is represented by
our current system designed to meet diverse needs. At its core,
the system (see Figure 4) utilizes a web server built using the
React framework, enabling efficient data access through APIs.
Various functionalities, including user authentication, patient
management, monitoring, task assignments, and communica-
tion, are supported by this architecture. Furthermore, seamless
integration with autonomous robots via Rosbridge is facili-
tated, enabling real-time communication and control through
WebSockets. A detailed technical overview of the components
and interactions within this system is provided in this article.

The foundation of our system is a web server developed
using the React framework. React’s component-based archi-
tecture and efficient state management make it an ideal choice
for building interactive and scalable web applications. User
interactions and data flow across different modules are man-
aged by our web server, which serves as the central hub.

4.1. API Integration
To facilitate data access and manipulation, a suite of

RESTful APIs is exposed by the web server. These APIs han-
dle various critical functions, including:

• Login: Secure authentication mechanisms to ensure
that only authorized users can access the system.

• Patients: Management of patient records, including
creation, retrieval, updates, and deletions.

• Monitorizations: Real-time monitoring of patient data,
allowing healthcare providers to track vital signs and
other health metrics.

• Tasks: Assignment and tracking of tasks to ensure that
all system operations are carried out efficiently.

• Communications: Enabling secure and efficient com-
munication between different users and system compo-
nents.

2https://www.mongodb.com/



Tirado-Bou, Amparo. et al. / Jornadas de Automática, 45 (2024)

4.2. MongoDB Atlas
Managing vast amounts of data efficiently is crucial. Mon-

goDB Atlas2 , a cloud-based NoSQL database service, pro-
vides robust and scalable solutions for storing, querying,
and analyzing data. Combined with a RESTful API, can
seamlessly interact with their data from various applications
and platforms, simplifies the deployment and management of
MongoDB databases.

In Figure 5, an initial version of the database used can
be seen, containing the basic management data for the robot’s
missions. This includes a table with the tasks to be performed,
linking the patient, their room, and the robot assigned to carry
out the task. Additionally, the monitoring data collected from
the patient will be stored.

Furthermore, the management of the different types of
users who will utilize the application must be addressed, as
varying profiles (types) will exist: doctors, nurses, patients,
and technicians. Depending on the user type, access to differ-
ent modules of the system will be granted.

4.3. Rosbridge
The integration of autonomous robots into our system is

facilitated through Rosbridge3, a middleware layer that al-
lows for seamless communication between web applications
and Robot Operating System (ROS) nodes. WebSockets are
used by Rosbridge to establish real-time, bidirectional com-
munication channels with ROS, enabling precise control and
monitoring of robotic functionalities. A persistent connection
between the web server and the ROS Master is provided by
WebSockets, allowing for low-latency data exchange and con-
trol commands. This setup is crucial for real-time applications
where immediate feedback and control are required.

4.4. Autonomous Robot Features
Various features of autonomous robots are supported by

our system, including:

• Position Tracking: Real-time updates on the robot’s
location and movement within its operational environ-
ment.

• Sensor Data: Access to data from the robot’s sensors,
such as cameras, lidar, and ultrasonic sensors, which are
essential for navigation and obstacle detection.

• Task Execution: The ability to send commands to the
robot to perform specific tasks, such as moving to a des-
ignated location or interacting with objects in its envi-
ronment.

An evolving system, built on a robust React framework
and integrated with autonomous robots via Rosbridge, is ex-
emplified by our approach to web and robotic technologies.
APIs for data access and WebSockets for real-time commu-
nication are leveraged to ensure a responsive and efficient
platform capable of meeting diverse application requirements.
This integration not only enhances user interaction but also
extends the capabilities of autonomous robots, paving the way
for innovative applications in various fields.

4.5. Context in React

In the development of complex web applications, espe-
cially those with multiple interconnected modules, the effi-
cient management and sharing of state are crucial. A powerful
and efficient solution for passing data through the component
tree without the need to manually pass props down at every
level is provided by React’s Context API.

The advantages of using React Context for sharing infor-
mation between different modules during a session can be seen
in our system.

The problem of prop drilling, where data must be passed
through many layers of components even if only a few of them
need it, is solved by the Context API in React. A global state
that can be accessed by any component within the application
is created by Context, providing a cleaner and more maintain-
able codebase.

Code maintainability, readability, and performance are en-
hanced by providing a centralized and efficient way to handle
global state with Context. In our system, seamless integration
and synchronization of data across different functionalities are
enabled, ensuring a cohesive and robust user experience. Re-
act Context is leveraged to ensure that our application remains
scalable and easy to maintain as it continues to evolve. Main
benefits:

A way to centralize the state that is needed across multi-
ple components is provided by Context, this results in a more
readable and understandable codebase, furthermore updates or
changes to the global state are made simpler.

In our system, which includes user authentication, patient
management, real-time monitoring, task assignments, and
communication, a vital role in managing and sharing session-
based information is played by React Context (see Figure 6).

Figure 6: Application of React Context in Our System.

5. Experimental results

The GUI created using React over the ROS framework
provides us with a simple and easy to use control interface.

Due to the flexibility of React and ROS, adding new mod-
ules to the code is highly simplified, as each module is imple-
mented as a separate component with the only main require-
ments being the topic to which data is being published and the
data type.

3http://wiki.ros.org/rosbridge suite
4https://www.youtube.com/watch?v=K6JbrTWOzTIt=8s

https://www.mongodb.com/
https://www.mongodb.com/
http://wiki.ros.org/rosbridge_suite


Tirado-Bou, Amparo. et al. / Jornadas de Automática, 45 (2024)

Figure 5: Entity-Relationship (ER) diagram

During the preliminary tests, the acceptance of the device
by end users and its ability to interact with its environment
have been observed (see evidence 4.

6. Conclusion and future work

This work methodology has allowed progress in other as-
pects such as teaching, enabling students to be involved in the
project, utilizing the generated prototypes, and contributing
their vision and ideas to the project.

Looking ahead, enhancements to our system are planned
by incorporating advanced features such as machine learn-
ing for predictive analytics, enhanced security protocols, and
more sophisticated robotic capabilities. This continuous evo-
lution will enable us to stay at the forefront of technology and
provide more robust and advanced solutions to our users.

Acknowledgements

This work has been carried out by the CIRTESU team,
”Center for Research in Robotics and Underwater Technolo-
gies” at the University Jaume I, IRS-Lab group (Interactive
and Robotic Systems Lab), UJI-B2021-30 (AUDAZ), and
the project H2020-Peacetolero-NFRP-2019-2020-04. The au-
thors wish to thank the ”Facultad de Ciencias de la Salud” and
”Hospital Provincial de Castellón” for the support they pro-
vided, enabling us to conduct preliminary tests in a real-world
setting.

References

Arce, D., Balbuena, J., Menacho, D., Caballero, L., Cisneros, E., Huanca, D.,
Alvites, M., Beltran, C., Cuellar, F., 2022. Design and implementation of

telemarketing robot with emotion identification for human-robot interac-
tion. In: 2022 Sixth IEEE International Conference on Robotic Computing
(IRC). pp. 177–180.
DOI: 10.1109/IRC55401.2022.00037

Ivanov, A., Zakiev, A., Tsoy, T., Hsia, K.-H., 2021. Online monitoring and
visualization with ros and reactjs. In: 2021 International Siberian Confer-
ence on Control and Communications (SIBCON). pp. 1–4.
DOI: 10.1109/SIBCON50419.2021.9438890

Jensen, K., Larsen, M., Nielsen, S. H., Larsen, L. B., Olsen, K. S., Jørgensen,
R. N., 2014. Towards an open software platform for field robots in preci-
sion agriculture. Robotics 3 (2), 207–234.
URL: https://www.mdpi.com/2218-6581/3/2/207
DOI: 10.3390/robotics3020207

Nukala, S., Sugaya, M., Nagarajan, S., 2023. Web based lidar point cloud
visualization and teleoperation tool for robots. In: 2023 14th International
Conference on Computing Communication and Networking Technologies
(ICCCNT). pp. 1–6.
DOI: 10.1109/ICCCNT56998.2023.10307953

Sousa, R. B., Rocha, C. D., Martins, J. G., Pedro Costa, J., Padrão, J. T.,
Sarmento, J. M., Carvalho, J. P., Lopes, M. S., Costa, P. G., Moreira,
A. P., 2024. A robotic framework for the robot@factory 4.0 competition.
In: 2024 IEEE International Conference on Autonomous Robot Systems
and Competitions (ICARSC). pp. 66–73.
DOI: 10.1109/ICARSC61747.2024.10535935

Szafr, D., Szafr, D. A., 2021. Connecting human-robot interaction and data
visualization. In: 2021 16th ACM/IEEE International Conference on
Human-Robot Interaction (HRI). pp. 281–292.

Varela-Aldás, J., Recalde, L. F., Guevara, B. S., Andaluz, V. H., Gandolfo,
D. C., 2024. Open-access platform for the simulation of aerial robotic ma-
nipulators. IEEE Access 12, 49735–49751.
DOI: 10.1109/ACCESS.2024.3384986

Velamala, S. S., Patil, D., Ming, X., 2017. Development of ros-based gui for
control of an autonomous surface vehicle. In: 2017 IEEE International
Conference on Robotics and Biomimetics (ROBIO). pp. 628–633.
DOI: 10.1109/ROBIO.2017.8324487

Wang, H., Li, X., Zhang, X., 2021. Multimodal human-robot interaction on
service robot. In: 2021 IEEE 5th Advanced Information Technology, Elec-
tronic and Automation Control Conference (IAEAC). Vol. 5. pp. 2290–
2295.
DOI: 10.1109/IAEAC50856.2021.9391068

https://www.youtube.com/watch?v=K6JbrTWOzTI&t=8s
https://www.mdpi.com/2218-6581/3/2/207

	Introduction
	React Framework
	Languages and frameworks
	Advantages and disadvantages of React

	Interface Modules
	Technical Overview
	API Integration
	MongoDB Atlas
	Rosbridge
	Autonomous Robot Features
	Context in React

	Experimental results 
	Conclusion and future work

