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Resumen

Este artı́culo aborda el desarrollo y la aplicación de un controlador basado en modelo para un electrolizador PEM (Membrana
de Intercambio de Protones). El objetivo principal es optimizar el control de temperatura, buscando una mayor eficiencia en la
producción de hidrógeno y una vida útil más prolongada del sistema. Estos dos beneficios se ven comprometidos cuando el
electrolizador se somete a altas temperaturas que superan su temperatura nominal. Esto puede ocurrir cuando el sistema es
alimentado por fuentes renovables, ya que debido a la variabilidad e intermitencia de su generación, pueden operar con altas
densidades de corriente eléctrica. El controlador propuesto emplea junto con el MPC (Control Predictivo Basado en Modelo)
un modelo de perturbación para promover el desacoplamiento en el tratamiento de las perturbaciones e introducir un grado de
libertad adicional en la estrategia de control. Los resultados de la simulación demuestran el rendimiento robusto del controlador
en el manejo de las no linealidades del sistema, asegurando que la temperatura del electrolizador se mantenga en un nivel seguro
para la preservación del sistema.

Palabras clave: Hidrógeno verde, Electrolizador PEM, Control predictivo basado en modelo, Modelo de Perturbación, Control
de Temperatura.

Control de temperatura para un electrolizador PEM alimentado por una fuente renovable.

Abstract

This article addresses developing and applying a model-based controller for a PEM (Proton Exchange Membrane) elec-
trolyser. The primary objective is to optimise temperature control, aiming for greater efficiency in hydrogen production and
extended system lifespan. These two benefits are compromised when the electrolyser is subject to high temperatures exceeding
its nominal temperature. Such conditions can occur when the system is powered by renewable sources, which can operate at
high current densities due to their variability and intermittency. The proposed controller employs an MPC (Model Predictive
Control) combined with a disturbance model to promote decoupling in handling disturbances and introduce an additional degree
of freedom to the control strategy. Simulation results demonstrate the robust performance of the controller in managing system
nonlinearities, ensuring that the electrolyser temperature remains at a safe level for system preservation.

Keywords: Green hydrogen, PEM electrolyser, Model Predictive Control, Disturbance model, Temperature Control.

1. Introduction

Energy transition is crucial for reducing greenhouse gas
(GHG) emissions and ensuring a sustainable future. It
involves shifting the energy matrix from fossil fuel-based

sources like oil, natural gas, and coal to renewable sources
like solar, wind, hydropower, and biomass. This transition is
essential to achieve the emission reduction goals of the Paris
Agreement (2015) (Maia and Garcia, 2023).

Another international agreement signed in 2015, the 2030
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Agenda for Sustainable Development, aims to achieve 17 Sus-
tainable Development Goals (SDGs), including climate action
(SDG 13), affordable and clean energy (SDG 7), and sustain-
able cities and communities (SDG 11) (United Nations, 2015).
Similarly, many other agreements focus on sustainability and
decarbonization, which are essential for environmental protec-
tion and transitioning to a low-carbon economy. This broader
concept includes energy transition and a range of strategies
and policies to reduce carbon emissions across all economic
sectors.

Green hydrogen is a promising alternative for clean energy
production and storage in the energy transition (Carmo et al.,
2013). The most extended process to produce it is water elec-
trolysis, which uses electricity to split water molecules (H2O)
into hydrogen (H2) and oxygen (O2). It is called green be-
cause the energy used for electrolysis comes from renewable
sources. Electrolysers, which are the heart of the operation,
convert electrical energy into chemical energy and produce
pure hydrogen.

The advantages of green hydrogen are manifold, making
it a compelling clean energy solution. It is a source of en-
ergy that leaves no carbon footprint, emitting no CO2 during
production or use, thereby contributing to a healthier environ-
ment. Its ability to be stored and transported for use during
high-demand periods or when renewable sources are unavail-
able enhances its practicality. But perhaps its most significant
advantage is its versatility. It can be used across diverse sec-
tors, including transportation, industry, power generation, and
residential heating, making it a promising solution for various
energy needs. This versatility sets green hydrogen apart and
makes it a key player in the energy transition.

As mentioned before, an electrolyser is a system that fa-
cilitates water electrolysis, a non-spontaneous redox chemical
reaction that necessitates an external electric current. It com-
prises two inert electrodes separated by an electrolyte, which
serves as the medium for ion movement between the anode
and the cathode, enabling electrolysis. The electrolyte can
exist in a liquid or solid state and can be classified into four
types: alkaline water electrolysis (AWE), polymer electrolyte
membrane (PEM), solid oxide electrolyte (SOE), and anion
exchange membrane (AEM). The alkaline type, a more estab-
lished and cost-effective technology, operates with low current
densities. The PEM type is well-suited for use with renew-
able sources like wind and solar, because operating with high
current densities and the dynamic is fast. However, they are
manufactured with noble materials such as platinum, which
makes their costs very high. The SOE type, still in the re-
search and development phase, is used for high-temperature
operations and is associated with a higher cost. AEM electrol-
ysis is a promising technology that does not need noble mate-
rials and can run on pure water, although there are some open
challenges as the durability of the membrane and the gases
cross-over.

Benghanem et al. (2024) show that a PEM electrolyser
powered by photovoltaic energy (PV-PEM) has greater effi-
ciency than the PV-Alkaline system, and the total system ef-
ficiency decreases from 15 % to 8 % with the increase of in-
cident solar irradiation. This fact occurs due to the amount of
current density supported by each electrolyte.

Therefore, controlling the temperature of a PEM electrol-

yser would make its use more economically viable. Operating
at temperatures close to its maximum operational limit results
in higher hydrogen production, and ensuring this limit is not
exceeded guarantees a longer lifespan, reducing damage to the
membrane from high temperatures. In light of this, some au-
thors have recently proposed temperature control strategies for
this electrolyser.

Ogumerem and Pistikopoulos (2020) utilized an explicit
Model Predictive Control (MPC), also known as eMPC, which
was implemented in a laboratory-scale PEM electrolyser sys-
tem. This controller was designed to maintain the water tem-
perature differential across the stack within a safe range, aim-
ing to preserve the membrane’s integrity for longer. The con-
trol strategy was implemented on a microcontroller, thereby
creating an embedded control system for continuous hydro-
gen production.

Keller et al. (2022) employ a model-based adaptive tem-
perature control for a 100 kW PEM electrolyser. The control
is implemented using a conventional Proportional-Integral-
Derivative (PID) control approach to meet the dynamic re-
quirements of the PEM electrolysis system. Additionally,
a model-based feedforward control is utilized to effectively
manage the stack temperature, ensuring it remains close to the
desired setpoint, even in the face of dynamic disturbances in
current density.

Molina et al. (2024) propose heat management in a PEM
water electrolyser through a system composed of various el-
ements, including PID control, water pumping circuit, air
cooler, thermal insulation, and constant monitoring and ad-
justment. The PID control adjusts the air cooler speed based
on two temperature transmitters, thus regulating the stack tem-
perature and maintaining the desired temperature difference
between the stack’s inlet and outlet, contributing to the sys-
tem’s energy efficiency.

Therefore, given the critical role of temperature control in
the performance and robustness of a PEM electrolyser, this
work proposes a novel strategy based on model-based predic-
tive control and a measured disturbance model. The strategy is
designed to ensure optimal performance within the specified
reference range, thereby enhancing control robustness.

The next sections are organised as follows. Section 2
presents the dynamic system and its linearization. Section 3
exposes the design of the proposed controller. Simulation re-
sults are shown in Section 4. Finally, concluding remarks are
given in Section 5.

2. The dynamic system

To ensure proper operation, electrolysers are supported by
auxiliary systems such as water purification, gas-liquid sepa-
rators, hydrogen purification, power supply, sensors and con-
trol units, cooling systems, pumps, valves, piping, and more.

For example, when a continuous voltage is applied be-
tween the anode and cathode electrodes, the electrolysis pro-
cess occurs within the electrolyser, producing H2 at the cath-
ode and O2 at the anode, both containing a small amount of
water. The resulting product then passes through gas-liquid
separators, which remove the residual water mixed with the
gases, ensuring that the hydrogen and oxygen produced are
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as pure as possible. The water removed during the separa-
tion process is generally recirculated back into the electrolyser
through the anode, enhancing system efficiency and reducing
water waste.

Espinosa-Lopez et al. (2018) describe how the process of
recirculating the water used in electrolysis works when cou-
pled with a refrigeration system. In turn, the cooling system
maintains the temperature within an ideal range, ensuring that
the electrolyser operates efficiently and safely, prolonging its
useful life and guaranteeing the quality of the products gener-
ated.

As previously mentioned, high temperatures pose a signif-
icant threat. They accelerate the degradation of the materials
that make up the electrodes and the electrolyser membrane,
cause overheating in the system, affect the electrical conduc-
tivity of its components, and influence the degree of purity of
the gases produced.

The dynamic system was modeled by Mora and Bordons
(2022), based on the system described by Espinosa-Lopez
et al. (2018), using the phenomenological model of the elec-
trolyser, which uses electrochemical equations to obtain the
static characteristics and thermal equations to capture the sys-
tem’s dynamics.

The model is determined from the energy balance, using
(1):

dTel

dt
=

1
Ct

(Q̇gen − Q̇loss − Q̇cool), (1)

in which Tel is the electrolyser temperature (K), Ct is the ther-
mal capacity of the stack (J/K), Q̇gen is the heat generated in
the system due to the irreversibilities or overvoltages of the
process (W), Q̇loss is the heat that is lost by interaction with
the environment by convection and radiation (W), and Q̇cool is
the heat dissipated by the cooling system (W).

Thus,
Q̇gen = ncIel(Vel − Vtn), (2)

and

Q̇loss =
1
Rt

(Tel − Tamb), (3)

in which nc is the number of cells, Iel is the current applied
to the electrolyser, Vel is the voltage applied to the electrol-
yser from the electrochemical model, Vtn is the thermoneutral
voltage, Rt is the thermal resistance, and Tamb is the ambient
temperature.

Then, replacing (2) and (3) in (1):

dTel

dt
=

1
Ct

[ncIel(Vel − Vtn) −
1
Rt

(Tel − Tamb) − Q̇cool]. (4)

Equation (4) represents a non-linear first-order differential
equation that depends on the state/output and its derivatives
(Tel,Ṫel), disturbances (Iel,Tamb), and the input or control ac-
tion (Q̇cool). The nonlinearity of this system is a consequence
of the non-linear behavior of the two disturbances, Iel and
Tamb. Consequently,

f (Tel, Ṫel, Iel,Tamb, Q̇cool) = 0. (5)

With the electrolyser’s non-linear model, the system must
be linearized around a point of operation in a permanent

regime to apply linear control techniques. Working with in-
cremental variables (∆Tel, ∆Ṫel, ∆Iel, ∆Tamb, ∆Q̇cool) around a
chosen operating point, where:

∆Ṫel = Ṫel − Ṫel,0 = Ṫel, ∆Tel = Tel − Tel,0, ∆Iel = Iel − Iel,0,

∆Tamb = Tamb − Tamb,0, and ∆Q̇cool = Q̇cool − Q̇cool,0.

Taylor series is applied to (5), and after calculating the par-
tial derivatives, the following state-space equation is obtained:

∆Ṫel = −ac∆Tel + bc∆Q̇cool + m1c∆Iel + m2c∆Tamb. (6)

For better understanding, the variables in (6) are renamed
as in (7):

ẋ(t) = −acx(t) + bcu(t) + m1cd1(t) + m2cd2(t), (7)

where x(t) is the electrolyser temperature, u(t) is the heat dissi-
pated by cooling system, d1(t) is the electric current and d2(t)
is the ambient temperature.

3. Proposed Control

Figure 1 shows the system that will be controlled and its
input and output variables.

PEM Electrolyser
Q̇cool Tel

Iel Tamb

Figure 1: PEM electrolyser system.

The first step towards the proposed control is to determine
the discrete model of the system. For this, the continuous
model (7) was discretized using the zero-order hold (ZOH)
mathematical model, where Ts is the sampling time:

α =
1 − e−acT s

ac
, ad = e−acT s, bd = αbc,

m1d = αm1c, and m2d = αm2c.

Resulting in (8):

x(k + 1) = ad x(k) + bdu(k) + m1dd1(k) + m2dd2(k). (8)

The proposed controller includes a CARIMA (Controlled
Autoregressive Integrated Moving Average) model to incor-
porate a disturbance estimate and to give unbiased predictions
in the steady state, irrespective of some parameter uncertainty.

The CARIMA model is expressed by (9), as presented by
Camacho and Bordons (2007) to calculate the output predic-
tions of the Generalized Predictive Controller:

a(z−1)y(k) = b(z−1)u(k) +
c(z−1)
∆

e(k), (9)

where z−1 is the backward shift operator, the denominator
of the perturbation model explicitly includes the integrator
∆ = 1 − z−1, e(k) is a white noise of zero mean, and the poly-
nomial c(z−1) will be a controller tuning parameter.

In this way, the disturbance model is included in (8), omit-
ting the index d for simplicity, resulting in:

y(k) =
b

(1 − az−1)
u(k) +

m1

(1 − az−1)
d1(k)

+
m2

(1 − az−1)
d2(k) +

(1 + c1z−1 + c2z−2)
∆(1 − az−1)

e(k).
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The system output is divided into four parts corresponding
to the four variables appearing in the previous equation, and
predictions are calculated for each:

y(k) = y1(k) + y2(k) + y3(k) + y4(k). (10)

Future outputs can be obtained using the state-space model
through recursive calculations over an N-step prediction hori-
zon. Predictions of y1(k):

y1(k + 1|k) = ay1(k) + bu(k),

y1(k + 2|k) = a2y1(k) + abu(k) + bu(k + 1),
... =

...

y1(k + N |k) = aNy1(k) + aN−1bu(k) + · · · + bu(k + N − 1).

Predictions of y2(k):

y2(k + 1|k) = ay2(k) + m1d1(k),
... =

...

y2(k + N |k) = aNy2(k) + (aN−1m1 + · · · + m1)d1(k).

Predictions of y3(k):

y3(k + 1|k) = ay3(k) + m2d2(k),
... =

...

y3(k + N |k) = aNy3(k) + (aN−1m2 + · · · + m2)d2(k).

y4(k) is the disturbance model represented in the transfer
function form. Equation (11) is used to transform it into state-
space:

y4(k) =
c(z−1)

∆(1 − az−1)
e(k) =

1 + c1z−1 + c2z−2

1 + ã1z−1 + ã2z−2 e(k),

{
x4(k + 1) = Ax4(k) + De(k),
y4(k + 1) = Cx4(k) + e(k). (11)

The matrices of (11) are calculated from the observable-
canonical form:

A =
[
−ã1 1
−ã2 0

]
, D =

[
c1 − ã1
c2 − ã2

]
, and C =

[
1 0

]
.

Next, e(k) is highlighted and replaced in (11), the equation
of states x4(k + 1):

e(k) = y4(k) −Cx4(k),
x4(k + 1) = Ax4(k) + D(y4(k) −Cx4(k)),
x4(k + 1) = (A − DC)x4(k) + Dy4(k).

Prediction calculations for y4(k) are performed:

y4(k + 1|k) = CAx4(k) +CDe(k),

y4(k + 2|k) = CA2x4(k) +CADe(k),
... =

...

y4(k + N |k) = CAN x4(k) +CAN−1De(k).

Finally, the matrix of future outputs is determined in the
function of the prediction matrices:

y(k) = Gu(k) + F1y1(k) + F2y2(k) + H1d1(k)
+ F3y3(k) + H2d2(k) + F4y4(k) + Ee(k), (12)

where,

G =


b 0 · · · 0

ab b · · · 0
...

...
. . .

...
aN−1b aN−2b · · · b

 , U =


u(k)

u(k + 1)
...

u(k + N − 1)

 ,

F1 = F2 = F3 =


a
a2

...
aN

 , F4 =


CA
CA2

...
CAN

 , E =


CD

CAD
...

CAN−1D

 ,

H1 =


m1

am1 + m1
...

aN−1m1 + · · · + m1

 , and H2 =


m2

am2 + m2
...

aN−1m2 + · · · + m2

 .
Equation (12) is equivalent to, Y = GU + f , where f is the

free response.
Equation (13) represents the cost function J. In MPC, it

is essential to define the controller’s objectives, select opti-
mal control actions that minimise tracking errors, penalize un-
wanted variations in control signals, and ensure efficient and
robust system performance:

J = (Y −W)T Q(Y −W) + ∆UT R∆U + UT S U, (13)

in which Y is the future output matrix, W is the future tra-
jectory reference matrix, ∆U is the control increments matrix,
and U is the control effort matrix. Q, R, and S are diagonal
weighting matrices that penalise tracking error, control effort,
and the magnitude of the control action, respectively.

To simplify the calculations, ∆U is expressed as a function
of U and u0 as shown below:

∆u(k)
∆u(k + 1)
...

∆u(k + N − 1)

 =


1 0 · · · 0 0
−1 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · −1 1




u(k)
u(k + 1)
...

u(k + N − 1)


−


1
0
...
0

 u(k − 1), where ∆U = MU − Tu(k − 1) = MU − u0.

Replacing Y and ∆U in (13), we get:

J = (GU + f −W)T Q(GU + f −W)+

(MU − u0)T R(MU − u0) + UT S U. (14)

Next, highlighting the role of U:

J = UT (GT QG + MT RM + S )U+

2(( f −W)T QG − uT
0 RM)U + const. (15)
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To calculate the optimal control, the minimum of J leads
to:

U = (GT QG +MT RM + S )−1(GT Q(W − f ) +MT Ru0). (16)

In this way, the controller coefficients are calculated. K
corresponds to the row matrix of the first portion of (16), ke

the second portion of (16), and kr the sum of the elements of
K:

K → 1st row of (GT QG + MT RM + S )−1GT Q, (17)

ke → 1st row of (GT QG + MT RM + S )−1MT RT. (18)

Therefore, the control signal is as shown below:

u(k) = krr(k) − K(F1y1(k) + F2y2(k) + F3y3(k) + H1d1(k)
+ H2d2(k) + F4y4(k) + Ee(k)) + kee(k) + keu0,

where,

F4y4(k) + Ee(k) = F4y4(k) + E(y4(k) +Cx4(k))
= (F4 − EC)x4(k) + Ey4(k),

kee(k) = ke(y4(k) +Cx4(k)) = key4(k) + keCx4(k).

Thus,

u(k) = krr(k) − KF1y1(k) − KF2y2(k) − KF3y3(k)
− KH1d1(k) − KH2d2(k) − [K(F4 − EC) + keC]x4(k)
− [KE − ke]y4(k) + keu0.

To simplify the expresion u(k), F is adopted in place of
F1, F2 and F3, then:

u(k) = krr(k) − KF(y1(k) + y2(k) + y3(k)) − KH1d1(k)−
KH2d2(k) − [K(F4 − EC) + keC]x4(k) − [KE − ke]y4(k) + keu0.

Renaming some coeficientes as,

K1 = KH1, K2 = KH2, K3 = KF, K4 = KE − ke,

K5 = K(F4 − EC) + keC, V = K5(zI − A + DC)−1D + K4,

and ŷ(k) = y1(k) + y2(k) + y3(k).

Thus,

u(k) = krr(k) − K1d1(k) − K2d2(k) − K3ŷ(k) − K4y4(k)
− K5x4(k) + keu0,

u(k) = krr(k) − K1d1(k) − K2d2(k) − K3ŷ(k) − Vy4(k) + keu0.

The proposed control structure is depicted in Figure 2. The
block P(s) denotes the model of the PEM electrolyser process.
The second saturation block incorporates the process satura-
tion model, reflecting its physical constraints and ensuring the
control signal remains within permissible limits. The first sat-
uration block is essential to prevent the windup effect. For sig-
nal discretisation, the ZOH block is employed. Additionally,
a continuous-to-discrete signal sampler is used post-process.
Gains K1, K2, K3, and ke are designed to ensure system stabil-
ity, while the robustness filter V enhances disturbance attenu-
ation. The gain kr ensures a unit static gain between the input
and output, which is desired to follow constant references at a
steady state.

kr P (s)

bd
z−ad

m1d

z−ad

m2d

z−ad

K3K2K1ke

z−1

V

••

•

•

r u ū

d1, d2

d1

d2

y1

y2

y3

ŷ

u0

y4

y
+
−

+
+

+
+

+
+

− +

+
+

+
−

+
+

+
+

Figure 2: Proposed model-based predictor structure.

One of the main features of this controller is that, in the
proposed configuration, it exhibits an action similar to a feed-
forward controller, allowing it to preemptively correct distur-
bances before they can significantly impact the process. Thus,
it provides decoupling and additional freedom to the conven-
tional MPC control. This advantage sets it apart from conven-
tional control structures, delivering a superior output signal in
terms of performance and robustness when measurable distur-
bances are present.

4. Simulation results

The proposed controller’s design used a linearized model
of a 1kW Hamilton-STD SPE-HG electrolyser from the De-
partment of Systems Engineering and Automatic Control lab-
oratory at the University of Seville. Some features of this sys-
tem are nc = 6 and thermal parameters Ct = 9540J/K and
Rt = 0.11K/W.

The simulations were conducted using MATLAB software
(version R2023b) and the Simulink environment with a non-
linear model of the electrolyser. Measured data of electrical
current supplied by photovoltaic (PV) generation and ambient
temperature on a sunny summer day in Seville, Spain, col-
lected on July 25, 2022, were used. The simulation time cor-
responds to 86400 seconds, equivalent to one measurement
day (24h).

T
e

m
p

e
ra

tu
re

 (
°C

)

Figure 3: Disturbances (Iel and Tamb).

Figure 3 shows the two measurable disturbances of the
system: Iel, current supplied to the electrolyser by the PV
source, and Tamb, ambient temperature. The current applied
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to the electrolyser is saturated at around 80 A since the al-
lowable operating current range for this electrolyser is 5-80A,
and this value could easily be exceeded under these climatic
conditions.

The controller design begins by discretizing the linearized
continuous model at an operating point (Tel,0 = 30ºC and
Iel,0 = 40A) for a sampling time of 100 seconds.

ẋ(t) = −9.6832e−4x(t) − 1.0482e−4u(t) + 2.3090e−4d1(t)

+ 9.5293e−4d2(t),
x(k + 1) = 0.9077x(k) − 0.01u(k) + 0.022d1(k) + 0.0908d2(k).

Choosing 40ºC as a reference, considering that tempera-
tures slightly above this value would already contribute to the
degradation of the PEM membrane, the proposed controller
was adjusted to the following values: prediction horizon equal
to 10, control horizon equal to 10, Q matrix weight equal to
1, R matrix weight equal to 0.5, S matrix weight equal to 0,
c1 and c2 from the c(z−1) polynomial are −1.62 and 0.6561,
respectively.

As the cost function was calculated analytically without
considering constraints, the weights Q, R, and S were defined
based on a prior analysis or heuristic of performance require-
ments and system characteristics. Therefore, the primary ob-
jective was to minimise output errors (Q) and control incre-
ments (R) without directly penalising the magnitude of the
control action (S = 0) since the added saturators, as shown
in Figure 2, naturally impose limitations on control action.

The matrix R, which is related to the control increment,
was adjusted so that r(1, 1) = 0; in this way, the cost asso-
ciated with the variation of the first control (∆u1) will not be
penalized in the control function cost. It modifies the cost
function to allow more aggressive initial control action, pro-
viding more efficient setpoint tracking while maintaining the
specified control and prediction horizons for the rest of the
optimization process. However, this approach should be used
cautiously to avoid potential oscillations or instability in the
system.
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Figure 4: Output response (Tel) and control response (Q̇cool).

The proposed controller was applied to the electrolyser,
generating Figure 4, in which it can be seen that the controller
presents a good performance even though the process is non-
linear. The output signal exhibits little oscillatory behavior
and soon reaches the desired reference value. At times when
there is no current application and the ambient temperature

value is lower than the desired reference, the electrolyzer out-
put temperature will only be influenced by the ambient tem-
perature, presenting similar behavior to it.

5. Conclusion

As highlighted in this paper, the temperature of the elec-
trolyser is a crucial parameter to control, given its significant
influence on performance and lifespan. Ensuring a desired
reference, the proposed controller promises to increase effi-
ciency in the electrolysis process, contributing to increased H2
production and longer equipment life. The controller design
uses model-based predictive control combined with a distur-
bance model to correct electrical current and ambient temper-
ature variations before they significantly impact the electrol-
yser output temperature. It aims to maintain the temperature
output signal at a desired value with good performance and
robustness in the face of non-linear variations in disturbances
applied to the process. The proposed strategy’s calculations
were conducted analytically, but future work will implement
an optimization algorithm to achieve optimal control, propos-
ing a comparison between the two types of controllers.
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