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Resumen

PCL es una librería de código abierto diseñada para el procesamiento de nubes de puntos. Por otra parte, YARP es un marco
de desarrollo e intermediario entre componentes hardware (p. ej. motores y sensores) para elaborar aplicaciones robóticas de
alto nivel. Este trabajo presenta una librería de C++ que emplea los algoritmos de PCL sin necesidad de exponer ninguno de
sus tipos. Esta permite describir sencillamente y mediante texto secuencias de pasos para el procesamiento de nubes de puntos,
exponiendo el resultado final a través de interfaces YARP. Se consigue encapsular así todos los detalles internos de PCL y se
evita la dependencia de sus módulos y cabeceras en las aplicaciones cliente. La librería ha sido probada en una aplicación de
reconstrucción de escenas para el popular algoritmo KinectFusion, en un módulo de construcción de mallas en tiempo real para
el simulador OpenRAVE, y se prevé su uso en tareas de visión con la nueva cabeza del robot humanoide TEO.

Palabras clave: Tecnología robótica, Percepción y sensorización, Información y fusión sensorial, Navegación, programación y
visión robótica, Integración sensorial y percepción.

Abstract

PCL is an open-source library and toolkit devoted to point cloud processing. On the other hand, YARP constitutes a robotics
middleware and framework which is used to interface with hardware components (such as motors and a wide range of sensors)
to build high-level distributed applications. This work presents a C++ library that leverages PCL algorithms without the need
of exposing any public PCL types. Sequences of cloud processing steps can be easily described and parsed from text, then
executed in a pipeline, and finish with the result being exposed through YARP interfaces, thus encapsulating all PCL-related
internals and avoiding the dependency on PCL modules and headers in client applications. The library has been tested on a scene
reconstruction app implementing the popular KinectFusion algorithm, on a real-time surface mesh construction module for the
OpenRAVE simulator, and it is devised to power vision-oriented tasks on the newly designed head of the humanoid robot TEO.

Keywords: Robotics technology, Perception and sensing, Information and sensor fusion, Robot navigation, programming and
vision, Sensor integration and perception.

1. Introduction

PCL allows performing a wide range of point cloud pro-
cessing tasks. However, programming knowledge is required
to prepare applications dependent on PCL types in compile-
time (due to C++ generics). This may hinder developing flex-
ible and code-less tools, for instance, graphical interfaces that
do not know the point type beforehand (i.e. in runtime).

In this work, a new C++ library is described that addresses
the aforementioned issues. First, the main software dependen-
cies are briefly introduced. Then, the implementation of the
library is explained, and a set of new tools and applications
that adopt it is outlined. The humanoid robot these tools aim
to enrich is put in context towards the ongoing hardware re-
placements that will benefit from said library. Finally, some
conclusions are drawn and future plans are listed.
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1.1. Frameworks and Toolkits
PCL (Point Cloud Library) is a community-driven open-

source project initially released in 2011 and available under a
free license. It comprises a collection of modules and algo-
rithms for 2D/3D point cloud processing. PCL is written in
C++ and is designed to be highly modular, with a focus on
performance and scalability (Rusu and Cousins, 2011). Its
algorithms span a variety of applications, such as (see Ta-
ble 4): affine transformations, cloud resampling, cloud filter-
ing, cloud processing, mesh construction, surface reconstruc-
tion, normal estimation, and mesh simplification.

YARP (Yet Another Robot Platform) is a C++ library in-
tended as both a middleware and framework for robotic appli-
cations (Metta et al., 2006). It is designed to provide a com-
munication layer between hardware components (e.g. motors,
sensors) to perform low-level control for high-level tasks on
distributed environments. A wide range of sensors, such as
RGB and depth cameras, can be interfaced through YARP
classes and tools by means of its extensive APIs. For the pur-
pose of this work, the yarp::sig::PointCloud class will be
the main entry point for the point cloud operations described
next. YARP is open-source and is actively maintained by the
robotics community.

2. Implementation

The proposed “YarpCloudUtils” library (RoboticsLab,
2024b) comprises the following set of C++ free functions:

• savePLY: writes a triangular polygon mesh or a point
cloud to a file on disk

• loadPLY: reads a triangular polygon mesh or a point
cloud from a file on disk

• meshFromCloud: constructs a triangular polygon mesh
from a point cloud

• processCloud: transforms an input point cloud into a
different output point cloud

By design, all input and output parameters are either stan-
dard or YARP types in order to avoid exposing the internal im-
plementation, which depends on a large number of PCL types
and modules. Thanks to this, the client code is not required to
include any PCL headers nor link against PCL libraries.

The savePLY and loadPLY helper functions have been
implemented using the header-only “tinyply” library, which
is a public domain implementation of the PLY mesh format
(Diakopoulos, 2020).

The meshFromCloud and processCloud functions im-
plement a pipeline-based approach to cloud processing. Both
accept an input point cloud; the former produces a mesh, while
the latter returns a different point cloud, adhering to the se-
quence of steps encoded in a configuration parameter also
passed to these functions. The pipeline can be textually de-
scribed in a configuration file, which is parsed by YARP util-
ities. Listing 1 describes a sample pipeline which consists of
three steps: downsampling using the PCL “VoxelGrid” algo-
rithm (which maps to a C++ class of the same name), normal
estimation, and the final surface reconstruction.

Listing 1: Sample pipeline configuration file.

[myPipeline downsample]
algorithm "VoxelGrid"
leafSize 0.02f

[myPipeline estimate]
algorithm "NormalEstimationOMP"
kSearch 40

[myPipeline reconstruct]
algorithm "Poisson"

By further exploiting YARP capabilities of configura-
tion parsing, the same pipeline can be described using the
command-line interface as in Listing 2. Here, the sample ap-
plication “app” has been prepared to expect an arbitrary num-
ber of parameters which are then parsed to define the cloud
processing pipeline.

Listing 2: Pipeline configuration via command-line interface.

app --myPipeline downsample estimate reconstruct \
--downsample::algorithm VoxelGrid \
--downsample::leafSize 0.02f \
--estimate::algorithm NormalEstimationOMP \
--estimate::kSearch 40 \
--reconstruct::algorithm Poisson

The internals of the “YarpCloudUtils” library heavily rely
on C++ generic programming, that is, the usage of tem-
plates in the library’s implementation is widespread and there-
fore several design decisions had to be taken in order to
prepare for dealing with the compile-time intricacies of this
paradigm. For instance, an equivalence had to be estab-
lished between the YARP types exposed in the public inter-
face of the four main functions, and the PCL types used in-
ternally. Both frameworks define their own class template,
yarp::sig::PointCloud<T> and pcl::PointCloud<T>
respectively, whose only type parameter refers to the data type
of the points stored internally. Table 1 lists the supported
equivalences between YARP and PCL point types.

Table 1: YARP and PCL point type equivalences.
YARP type (yarp::sig::) PCL type (pcl::)
DataXY* PointXY*
DataXYZ PointXYZ
DataNormal* Normal*
DataXYZRGBA PointXYZRGB
DataXYZI PointXYZI
DataInterestPointXYZ InterestPoint
DataXYZNormal PointNormal
DataXYZNormalRGBA PointXYZRGBNormal

Despite being included in the previous table, it must be
noted that XY and plain-normal types are not available for
surface meshing and cloud processing.

Another consequence of using generics is the inability to
resolve the type of the point cloud at runtime through poly-
morphism. Compile-time switches, known as “traits”, had to
be introduced to handle the type conversions between YARP
and PCL types, as well as between the expected input and out-
put data types of any PCL class invoked within the pipeline.
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Since client applications are free to define any custom
pipeline through a text descriptor file, the library must both
forbid impossible type conversions, and allow the expected
ones to happen at any intermediate step of the process. All
combinations are considered by the compiler and already built
into the library, therefore client applications will perceive no
compile-time errors in case an impossible scenario is encoun-
tered. Whenever such an incompatible transition between
steps is requested, a runtime error will be thrown instead.

To accomodate for the multiple supported PCL point types
previously listed, the cloud_container class is introduced
to store any of these types, but at most one of them can be
used simultaneously (Figure 1).

- xyz: PointCloud<PointXYZ>
- xyz_rgb: PointCloud<PointXYZRGB>
- xyzi: PointCloud<PointXYZI>
- xyz_interest: PointCloud<InterestPoint>
- xyz_normal: PointCloud<PointNormal>
- xyz_rgb_normal: PointCloud<PointXYZRGBNormal>
- xyzi_normal: PointCloud<PointXYZINormal>
- mesh: PolygonMesh

+ getCloud(): PointCloud<T>
+ setCloud(): PointCloud<T> &
+ useCloud(): PointCloud<T> &
+ getMesh(): PolygonMesh
+ setMesh(): PolygonMesh
- initializeCloudPointer(PointCloud<T1>): PointCloud<T2>

cloud_container

Figure 1: UML diagram for the cloud_container class.

The private attributes of this class are shared pointers to
PointCloud<T> instances of the specific point type T; extra
room is also left for a polygon mesh. Public accessors are
provided to set at most one of these attributes at any time,
depending on the algorithm requested at the current pipeline
step, or to perform the conversion from the available type to
the requested one.

Algorithm 1 describes the implementation of the function
processCloud(), which is responsible for the cloud process-
ing pipeline. It takes an input cloud, an output cloud, and a
sequence of steps to be executed. The function first checks
if the input and output types are supported, then converts the
input cloud to a PCL type (per Table 1), processes it, and fi-
nally converts the output cloud back to a YARP type. The
meshFromCloud() function follows an analogous algorithm,
but it returns a mesh instead of a cloud.

Algorithm 1: Implementation of processCloud().

Function processCloud(in, out, steps):
T_in← yarp_type_to_pcl_type(in)
T_out← yarp_type_to_pcl_type(out)
if not is_supported<T_in, T_out>() then

return false
end
pcl_in<T_in>← yarp_to_pcl(in)
pcl_out<T_out>← processPCL(pcl_in, steps)
out← pcl_to_yarp(pcl_out)
return true

The implementation of the method getCloud<T>() of
class cloud_container is outlined in Algorithm 2.

Algorithm 2: Implementation of getCloud<T>().

Function getCloud<T>(in):
if not xyz is empty then

// initializeCloudPointer()
if is_same_type(xyz, T) then

return xyz
else if not is_convertible(xyz, T) then

throw runtime_error
else

out← copyPointCloud(xyz)
return out

end
else if not xyz_rgb is empty then

// repeat previous block
else if ... then

// xyzi, xyz_interest...
else

throw runtime_error
end

It is assumed that one of the private attributes was previ-
ously initialized through setCloud<T>(). If the requested
type T matches the available one when getCloud<T>() is
called, the attribute is directly returned by the function. Oth-
erwise, a fallback conversion is attempted, and if it fails, a
runtime error is thrown. The supported fallbacks are listed in
Table 2. Compound types can be stripped from the excess in-
formation they carry, e.g. a XYZ+RGB+normal type can fall
back to either XYZ+RGB or XYZ+normal. The default type
is plain XYZ since all supported point types imply it.

Table 2: Allowed PCL point type fallbacks.
source type target type
any pcl::PointXYZ

pcl::PointXYZRGBNormal
pcl::PointXYZRGB
pcl::PointNormal

pcl::PointXYZINormal
pcl::PointXYZI
pcl::PointNormal

Algorithm 3 describes the implementation of the internal
processPCL() function, which is responsible for the actual
cloud processing. It iterates over the requested sequence of
steps, each of which invokes the corresponding PCL class that
implements the desired algorithm. At this stage, all involved
data types are PCL types that have undergone the preliminary
conversions and fallbacks.

Algorithm 3: Implementation of processPCL().

Function processPCL(in, out, steps):
obj← cloud_container()
obj.setCloud(in)
for step in steps do

obj← processStep(obj, step)
end
out← obj.getCloud()
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Table 3: PCL point type decay conversions.
category source type target type
any any same as source

XYZ(+RGB)
pcl::PointXYZRGB

pcl::PointXYZRGB
pcl::PointXYZRGBNormal
other pcl::PointXYZ

XYZ+RGB any pcl::PointXYZRGB

XYZI(+normal)

pcl::PointNormal
pcl::PointXYZINormalpcl::PointXYZRGBNormal

pcl::PointXYZINormal
other pcl::PointXYZI

XYZ+normal

pcl::PointXYZ
pcl::PointNormal

pcl::InterestPoint
pcl::PointXYZRGB pcl::PointXYZRGBNormal
pcl::PointXYZI pcl::PointXYZINormal
other same as source

In addition, a decay conversion is performed to ensure that
the output type of each step matches the input type of the next
one, and to prepare cloud_container for storing the result-
ing output type of the latter. Table 3 lists the supported decay
conversions. The “XYZ(+RGB)” notation stands for XYZ or
XYZ+RGB point types, whereas “XYZ+RGB” denotes that
the desired point type must carry information for both XYZ
and RGB channels.

For instance, the “VoxelGrid” algorithm doesn’t enforce
a specific type requirement on its input, hence any point
type queried from the current cloud_container instance
via getCloud() and passed to it will be accepted. Be-
sides, this same type will be the expected output type
passed to the cloud_container instance of the following
step via setCloud(). The “NormalEstimation” algorithm,
on the other hand, produces a point cloud that aditionally
stores the normals, therefore the corresponding attribute of
the cloud_container instance will be initialized accord-
ingly (PointXYZRGBNormal if the input was PointXYZRGB,
PointXYZINormal if the input was PointXYZI, and so
on). The “Poisson” algorithm expects a cloud with normal
points, whatever the base type would be (e.g PointNormal,
PointXYZRGBNormal, or PointXYZINormal), and its result
is a PolygonMesh.

Table 4 lists the supported PCL algorithms, their expected
input types, and the output types they produce, according to
the categories defined in Table 3.

3. Case Studies

The tools described in this work are intended for use on the
TEO platform developed by the RoboticsLab group of Uni-
versidad Carlos III de Madrid (Martínez et al., 2012). This
full-sized humanoid robot, depicted in Figure 2(a), features
28 degrees of freedom distributed along its four limbs, neck
and torso. A range of sensors allow it to interface with its
environment, including a high-resolution RGB camera Flea3
FL3-U3-88S2C-C by Point Grey, and an ASUS XtionPRO
Live RGB-depth sensor, both mounted on its articulated head.
YARP powers low-level and high-level tasks interfacing with
these hardware components over a distributed local network.

3.1. Redesign of TEO’s Head

A prototype for a new head has been developed which in-
tegrates an improved sensing system with two Intel Realsense
D435if RGBD sensors, featuring IR pass filters for enhanced
depth noise quality and avoidance of false object detection due
to light reflections, as well as an inertial measurement unit
(IMU) for better image stabilization, for instance. The high-
resolution Flea3 camera remains in the new design to aid in
focusing on narrow fields of view for static mapping (see Fig-
ure 2(b)). The new head also features an advanced computing
module Nvidia Jetson AGX Xavier for developing vision and
AI applications, which can be used for energy-efficient point
cloud generation of the two-camera setup.

(a) TEO humanoid robot (b) New head design

Figure 2: Humanoid platform designed by RoboticsLab-UC3M.

The new head poses an opportunity for the development of
novel vision-related applications which use all three cameras.
An improvement to the construction of 3D maps as proposed
in this work might come from the addition of color informa-
tion to the point cloud. This is shown to improve the perfor-
mance of the algorithms where groups of points are similar
based on the geometric features (Han et al., 2024).

A paradigm shift comes from the inclusion of two RGBD
cameras at eye-width distance, where the point clouds ob-
tained from each camera need to be synchronized and mixed
in those areas where their fields of view collide. Several ap-
proaches exist to ensure proper synchronization across mul-
tiple RealSense cameras (Yoon et al., 2021) and their accu-
rate arrangement, configuration and data processing in multi-
camera setups (Herguedas et al., 2020).
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Table 4: Supported PCL algorithms.
PCL class (pcl::) usage expected type
transformPointCloud affine transformation any
transformPointCloudWithNormals affine transformation any normal type
ApproximateVoxelGrid cloud resampling any
BilateralFilter cloud filtering XYZI(+normal)
BilateralUpsampling cloud processing XYZRGBA
ConcaveHull mesh construction any
ConvexHull mesh construction any
CropBox cloud filtering any
FastBilateralFilter cloud filtering XYZ(+RGBA)
FastBilateralFilterOMP cloud filtering XYZ(+RGBA)
GreedyProjectionTriangulation mesh construction XYZ/XYZI/XYZRGBA + normal
GridMinimum cloud resampling any
GridProjection surface reconstruction XYZ/XYZI/XYZRGBA + normal
LocalMaximum cloud resampling any
MarchingCubesHoppe surface reconstruction XYZ/XYZI/XYZRGBA + normal
MarchingCubesRBF surface reconstruction XYZ/XYZI/XYZRGBA + normal
MedianFilter cloud filtering any
MeshQuadricDecimationVTK mesh processing mesh
MeshSmoothingLaplacianVTK mesh processing mesh
MeshSmoothingWindowedSincVTK mesh processing mesh
MeshSubdivisionVTK mesh processing mesh
MovingLeastSquares cloud processing any
NormalEstimation normal estimation any
NormalEstimationOMP normal estimation any
OrganizedFastMesh mesh construction XYZ(+RGBA)
PassThrough cloud filtering any
Poisson surface reconstruction XYZ/XYZI/XYZRGBA + normal
RadiusOutlierRemoval cloud filtering any
RandomSample cloud resampling any
SamplingSurfaceNormal cloud resampling XYZ/XYZI/XYZRGBA + normal
ShadowPoints cloud filtering any normal type
SimplificationRemoveUnusedVertices mesh simplification mesh
StatisticalOutlierRemoval cloud filtering any
UniformSampling cloud resampling any
VoxelGrid cloud resampling any

3.2. Simulation: Real-Time Mesh Visualization

Simulators are extensively used prior to performing any
task on the actual robot in real scenarios. A collection of TEO
models is available for the OpenRAVE simulator. Its capabil-
ities can be extended through plugins to add new controllers,
visualization tools, physics engines, etc. A new YARP device
has been implemented to query frames from a depth sensor,
and to construct a surface mesh in real time using this informa-
tion. It connects to the simulated environment through an ex-
isting OpenRAVE plugin which was extended to permit mesh
visualization. The projection of the mesh is attached to the ar-
ticulated head, thus following its motion. This application is
intended to replicate the joint configuration of the real robot on
the simulated one, along with the depth information collected
by the camera on the robot’s head (RoboticsLab, 2024a).

The “OrganizedFastMesh” PCL algorithm bundled with
“YarpCloudUtils” is recommended in this scenario due to per-
formance concerns. It is optimized for point clouds captured
from a camera frame. The “SimplificationRemoveUnusedVer-
tices” algorithm helps reducing the size of the resulting mesh.

Figure 3 depicts a surface mesh construction experiment
using real-time depth information acquired through an Intel
RealSense D435i RGBD camera.

Figure 3: OpenRAVE real-time mesh visualization (Łukawski, 2020).
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3.3. High-Level Applications
In addition, a scene reconstruction application was de-

veloped implementing the popular KinectFusion algorithm
through OpenCV classes (Newcombe et al., 2011; Robotic-
sLab, 2024b). It is aimed to perform real-time surface map-
ping and tracking with a depth sensor. By leveraging the ca-
pabilities of YARP, a communications layer via a server-client
scheme was introduced in order to remotely start and stop the
processing, and to query the point cloud on demand from the
server application. The “YarpCloudUtils” library presented in
this work is used to process said point cloud, to generate a
surface mesh from it (Figure 4), and to export it to a PLY file.

Figure 4: Reconstructed scene using the KinectFusion algorithm.

Lastly, a state-of-the-art object identification technique
has been devised to be complemented by the PCL-driven
pipeline described in this work. Figure 5 depicts a collection
of objects whose point cloud has been conveniently clustered,
and their volume delimited with superquadrics fitting.

(a) Clustered 3D point clouds (b) Superquadrics fits

Figure 5: Superquadric estimation with point clouds (Menendez et al., 2024).

4. Conclusions

This work described the implementation of a new library,
“YarpCloudUtils”, aimed to simplify the usage of PCL algo-
rithms in C++ code. Its public interface was designed to lever-
age the YARP robotics framework, thus improving the integra-
tion of point cloud-related applications with other components
in a robotic task. The library was designed to take advantage
of YARP capabilities in configuration parameter parsing: a
pipeline of cloud processing steps can be stored and read from
a text file or via command line options. The main advantage
of this strategy is that users don’t need to configure the correct
PCL modules nor include specific headers. This approach was
materialized in a number of case studies involving the RGBD
sensor of the TEO humanoid robot, and a new head design was
described, focusing on future potential uses of this library.

On a future note, a rotating platform is being developed
to allow scanning objects with a fixed RGBD sensor. The re-
sulting point cloud would undergo a processing step with a
pipeline configured in the library presented in this work. An
alternative setup is also devised, in which a collaborative ABB
GoFa robot has such a sensor mounted on its end effector, and
performs a scan of a fixed object following a predefined con-
figurable trajectory.

Future plans also include exploring the integration of the
current vision-oriented YARP ecosystem with the ROS2 pro-
gramming stack, the development of an analogous mesh visu-
alization plugin for the Gazebo simulator, and the adoption of
C++20 to exploit its new features towards generic program-
ming and “concepts”.
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