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Resumen

Este artı́culo presenta un método, implementado en ROS2, para la calibración extrı́nseca de un conjunto heterogeneo de
cámaras que incluyen tanto RGB como de profundidad. El método propuesto estima las poses relativas entre dichas cámaras a
partir de la observacion de planos. Para ello, en primer lugar, se extraen y emparejan los vectores normales de las superficies
planas de las imágenes (RGB y de profundidad). En segundo lugar, se plantea un problema de optimización que estima las
rotaciones y traslaciones que minimizan los errores entre los pares de vectores normales en correspondencia. La aplicación
utiliza algoritmos disponibles en librerias estándar para la extracción de planos (OpenCV, PCL) y optimización (Eigen). La
eficacia y precisión del método se ilustran en una configuración con dos cámaras RGB y una cámara de profundidad.

Palabras clave: detección, integración de sensores y percepción, tecnologı́a robótica, percepción y detección, información y
fusión sensorial

Abstract

This article presents a method implemented in ROS2 for the extrinsic calibration of camera rigs that combine heterogeneous
sensors, including any combination of RGB and depth cameras. The proposed method estimates the relative poses between
sensors using a two-step process. First, normal vectors of planar surfaces are extracted from RGB or depth images and matched
across sensors. Second, an optimization problem determines the relative rotations and translations between all of them by
minimizing errors between corresponding normal vector pairs. The implementation utilizes off-the-shelf algorithms for plane
extraction (OpenCV, PCL) and optimization (Eigen). Experimental results on a setup with two RGB cameras and one depth
camera demonstrate the effectiveness of the proposed approach.

Keywords: sensing, sensor integration and perception, robotics technology, perception and sensing, information and sensor
fusion

1. Introduction

Mixing up different sensor types has turned out to be very
advantageous in a variety of applications. This way, the down-
sides of a specific technology can be compensated by set-
ting up heterogeneous systems. Accurate extrinsic calibra-
tion, which yields the relative pose between the sensors’ co-
ordinate systems, is essential for achieving precise and re-
liable measurements with these configurations. A widely
used setup are depth-color sensor combinations. In particular,

we will discuss arbitrary combinations comprising structured-
light-based RGB-Depth (RGB-D) cameras alongside RGB
cameras, found in applications ranging from robotics to au-
tonomous driving and 3D mapping. However, the variety
of possible sensor combinations and the different data types
present challenges in the extrinsic calibration of such systems.
Specifically, this complicates the development of a general so-
lution that can be widely applied without requiring a new ap-
proach for each unique sensor setup. Therefore, the primary
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challenge addressed in this study is the calibration of hetero-
geneous sensor configurations that include depth and RGB
cameras, as most existing calibration methods are limited to
a specific setup. For this reason, we propose a method, im-
plemented within a ROS2 environment, that allows for flex-
ible calibration of sensor combinations, addressing both ho-
mogeneous and mixed sensor setups handling image and point
cloud data.

The methodology applied to the described problem con-
sists of splitting the problem into two parts. The first ROS2
node is responsible for:

1. time-synchronizing the incoming messages in pairs.
2. detection of planes in both the depth and RGB images.
3. calculation of plane correspondences based on a rough

initial estimation of the sensor positions.
4. publishing the plane correspondences in a custom mes-

sage format.

The second node is configured to receive the aforementioned
messages, accumulating them and executing the calibration
based on user-specified parameters and the plane data.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work discussing similar methods. Sec-
tion 3 details the methodology, including the data process-
ing and the calibration. Section 4 presents the experimental
setup. Finally, Section 5 analyzes and discusses the findings,
followed by the conclusions of the research in Section 6.

2. Related work

The extrinsic calibration related homogeneous and het-
erogeneous systems applied to depth and/or RGB cameras is
a well-explored area with a variety of different approaches.
In particular, we overview methods regarding homogeneous
RGB-D and range camera systems as well as mixed depth-
color sensor systems.

2.1. Homogeneous systems

Methods about the extrinsic calibration of homogeneous
sensor systems are a well explored field. Hence, a big variety
of methods exists for different sensor types. For multiple RGB
cameras, Zhang (2000) is widely known and used, especially
when it comes to 2D-object-based techniques. Compared to
this type of method, self-calibration techniques don’t require
specific calibration environments (Lv et al., 2015). Later, new
results have been presented mainly discussing refinements of
Zhang (2000), e. g. applying RANSAC (Zhou et al., 2013),
(Zhang et al., 2017).

Taking a look at extrinsic depth sensor calibration, exist-
ing methods are mostly target-based. The first option in this
context are plane-based techniques. They utilize plane detec-
tion and comparison to find correspondences among different
sensors’ data sets. An approach of this kind was for exam-
ple implemented by Fernandez-Moral et al. (2014). On the
other hand, it is possible to calibrate from 3D objects such as
spheres (Su et al., 2018). These methods usually outperform
plane based methods, but require a partially overlapping field
of view concerning the sphere.
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Figure 1: Schematic representation of the experimental system using a depth
camera (D) and two RGB cameras (C1, C2)

2.2. Heterogeneous systems
In the context of this paper, it is important to clarify the

terms ”intrinsic” and ”extrinsic calibration”. Traditionally, in-
trinsic calibration refers to determining a camera’s internal pa-
rameters, such as focal length, principal point, and lens distor-
tion coefficients. Extrinsic calibration, on the other hand, in-
volves determining the translation and rotation (i.e., the pose
[R | t]) between different sensors or cameras. Most RGB-D
devices combine a standard RGB sensor and a depth sensor
based on structured (infrared) light. In relevant literature, the
calibration of these components within the device is often re-
ferred to as extrinsic calibration because they are two separate
sensors. However, this differs from our focus, which is on the
extrinsic calibration of several independent devices.

Device-internal methods (Basso et al., 2018), (Chen et al.,
2018) can rely on small displacements, small rotation angles,
and a fixed setup that consists only of the color-depth pair.
This makes the calibration process more straightforward com-
pared to the extrinsic calibration of a system with separated
devices featuring more complex setups.

Besides structured light technology, most depth sensors
are based on time-of-flight or laser scanning (LiDAR). The
latter, in particular, has several references in the literature re-
garding sensor fusion with RGB cameras.

Initial approaches work on 2D LiDAR systems, such as
Zhang and Pless (2004). Methods involving a 3D LiDAR can
be classified into target-based and targetless. Target-based
methods, like those using planar surfaces to calibrate a laser-
camera system (Park et al., 2014), often demonstrate higher
accuracy. These methods frequently employ checkerboards
(Geiger et al., 2012; Pandey et al., 2010) or 3D objects like
boxes (Pusztai and Hajder, 2017). However, they imply more
restrictive demands for the calibration environment (Pandey
et al., 2012).

3. Methodology

The presented procedure addresses the challenge of deter-
mining the relative poses of mixed and rigid sensor systems.
This extrinsic calibration is achieved without the necessity of
visual overlap, provided that a planar overlap exists. This im-
plies that sufficiently large planes, for example walls or the
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floor, are visible to the sensors simultaneously from different
viewpoints. The sensors employed in this setup may vary and
can provide either depth data or image data. If RGB sensors
are part of the configuration, the planes must feature checker-
boards for detection purposes. Given these constraints, the
specific combination of sensors becomes inconsequential.

By leveraging the simultaneously observed planes, we can
identify plane parameters within each sensor’s system. Subse-
quently, correspondences between planes from different sen-
sors can be established by initially estimating the sensor posi-
tions roughly. Once identified, the transformation can be used
as an argument of a cost function which is to be minimized in
the calibration. The initial value is obtained from the user’s
guess. Assuming the presence of a principal sensor represent-
ing the world coordinate system, calibration can be performed
either for each sensor with respect to this reference system or
for every possible pair.

3.1. Plane extraction

Using reliable and exact methods for plane detection in
the different data formats is crucial for a successful calibra-
tion process. Due to the flexibility to use either point cloud or
image data, the detection methods differ in this aspect.

However, the used plane format is the same in both cases,
namely the Hesse normal form. Each point p ∈ R3 in the
plane satisfies the equation

n⊤p + d = 0 (1)

where n ∈ R3 represents the planes normal vector with
||n||2 = 1 and d ∈ R is the plane’s distance to the origin.

To extract planes from RGB images, we utilize checker-
boards of a known size. Given the intrinsic and distortion pa-
rameters of the camera(s) (Heikkila and Silvén, 1997), tradi-
tional methods for solving the Perspective-n-Point (PnP) prob-
lem (OpenCV) are applied to calculate the plane’s parameter-
ization in 3D space (Lepetit et al., 2009). To maximize the
information extracted from RGB images, the implementation
can also handle multiple checkerboards. Thus, if the calibra-
tion environment provides more than one suitable plane, sev-
eral of them can be equipped with (necessarily equal) checker-
boards and detected accordingly.

Apparently, the plane recognition in point cloud data ob-
tained from depth sensors requires a different approach. To
address this, a region growing technique is applied (Holz
and Behnke, 2013), implemented in the PCL (Trevor et al.,
2013). However, alternatives such as RANSAC-based tech-
niques (Honti et al., 2018) or graph-based methods (Nguyen
and Le, 2013) hold similar promise.

Once the regions are segmented, a threshold ensures that
only sufficiently large regions are processed further. Should a
region fail to meet this threshold relative to the total points in
the cloud, it is excluded from further consideration.

For each of these regions, the objective is to determine the
optimal fitting plane estimating its parameters, given a set of
3D points ri = (xi, yi, zi)⊤, where i = 1, . . . ,N. The aim is to
minimize the sum of squared distances from each point to the
plane. This objective is addressed via an eigenvector prob-
lem assumption under the assumption of isotropic Gaussian
noise, following Poppinga et al. (2008). To be more exact,

the optimal normal vector n∗ is the eigenvector to the smallest
eigenvalue of the matrix

M =
N∑

i=1

(ri − rG)(ri − rG)T , (2)

where rG =
1
N

∑N
i=1 ri is the region’s centroid. Once obtained,

the optimal d∗ can be calculated using (1):

d∗ = −r⊤Gn∗. (3)

3.2. Obtaining corresponding planes
After segmenting and selecting the principal regions as

well as estimating their plane parameters for different images
or point clouds, it is possible to proceed with searching for
correspondences among the planes. At this point, the initial
estimation of the sensors’ position given by the user comes
into consideration. Depending on the already mentioned cal-
ibration strategy, the following procedure is to be carried out
either for all possible sensor pairs in the setup (see Figure 1)
or only for those including the principal sensor.

Let A and B be a pair of sensors. {(nA
i , d

A
i )}, i = 1, . . . ,K is

considered the set of K planes seen by sensor A where nA
i ∈ R

3

is the i-th normal vector and dA
i ∈ R holds the correspond-

ing distance to the origin , both in the system of A. Anal-
ogously, this holds for the planes of B, given by the set of
tuples {(n′Bi , d

′B
i )}, j = 1, . . . , L. Here n′Bi ∈ R3 is the normal

vector of the j-th plane and d′Bi ∈ R its distance to the origin.
A tilde (∼) above a letter indicates an estimated value.

Algorithm 1 Establish plane correspondences (simplified)
1: Input1: {(nA

i , d
A
i )}, i = 1, . . . ,K

2: Input2: {(n′Bi , d
′B
i )}, j = 1, . . . , L

3: for i = 1, . . . ,K do
4: for j = 1, . . . , L do
5: p̃A

j ←transformA
B(n′Bi )

6: x̃A
j ← transformA

B(n′Bi · d
′B
i )

7: New distance: ẽA
j ← −p̃A

j · x̃
A
j

8: θ = nA⊤
i n′Ai

9: s = ||dA
i − ẽA

j ||

10: if θ < θth and s < sth then
11: New correspondence: ni/di with n′i /d

′
i

12: end if
13: end for
14: end for

For readability, we assume that sensor A itself is the ref-
erence system. Therefore, its plane data does not need to be
transformed. Algorithm 1, oriented to the structure presented
in Fernandez-Moral et al. (2014), shows how correspondences
between planes are detected. It iterates over all possible plane
pairs. Then, the plane parameters of B are estimated in A using
the initial guess chosen in advance. For the estimated trans-
formed normal vector p̃A

j only the coordinate transformation
A −→ B is required. To calculate the distance to the origin ẽA

j an
auxiliary point on the transformed plane x̃A

j is calculated first.
If the planes are sufficiently similar, i. e. neither the an-

gle between the normal vectors θ nor the difference between
the distances s exceed the thresholds θth and sth, they are con-
sidered the same plane seen from different viewpoints. The
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choice of threshold values is closely linked to the accuracy of
the initial estimation. For example, assuming that the initial
estimations are too rough and the threshold values too small,
fewer plane matches would be detected.

The output of this step is a list of plane matches or cor-
respondences. In case of the intention to calibrate all sensors
with respect to a principal one, this results in M − 1 plane
match lists, M being the total number of sensors in the sys-
tem. If the calibration is to be executed for all possible pairs,
the number of match lists grows to M · (M − 1)/2.

3.3. Calibration problem formulation
Once the plane correspondences are obtained, the process

comes down to sensor pair-wise calibrations based on this
data. As the calibration of each sensor pair can be seen as
an independent problem, we restrict the following discussion
to one of them, keeping in mind that there might be additional
pairs to calibrate.

Having processed the data up to this point, we can take
advantage of existing methods to perform the optimization.
Thus, the following relates to Arun et al. (1987) and Sorkine-
Hornung and Rabinovich (2017), also used in a previous re-
search by Fernandez-Moral et al. (2014).

We start with the previously introduced sensor pair where
A represents the system of reference and B is located with a
relative transformation [R | t] ∈ SE(3) with respect to A. The
rotation R ∈ SO(3) is represented by a 3 × 3 matrix, and the
translation t ∈ R3. Furthermore, let now be {(ni, di)}A and
{(n′i , d

′
i )}B, i = 1, . . . ,N, the sets of N ordered plane corre-

spondences between A and B, respectively. I. e., the planes
with the same index i are associated with the same plane. We
now aim to estimate the optimal [R | t], considering that the
measurements are affected by unbiased Gaussian noise. This
problem can be divided into two separate ones since the rota-
tion and translation constraints are decoupled.

The rotation matrix R can be found by solving the least
square problem

R = argmin
R

N∑
i=1

ωi||ni − Rn′i ||
2
2. (4)

where ωi denotes the weight of the i-th correspondence. Ap-
plying Arun et al. (1987), it can be reformulated and solved
non-iteratively by applying a singular value decomposition.
Similarly, the translation can be obtained analytically, as well
by considering a least square problem:

argmin
t

N∑
i=1

ωi(di − d′i + t⊤ni)2. (5)

However, Zúñiga Nöel et al. (2017) improved this solution,
outlining that in the analytic solution in Fernandez-Moral et al.
(2014) the presence of very noisy observations or outliers
causes difficulties. Instead, iterative, more robust solutions
using Gauss-Newton or Levenberg-Marquardt algorithms are
proposed. To set up the problem correctly, (4) and (5) are
combined as

argmin
ξ

([
ni

di − d′i

]
−

[
R 03×1
−t⊤R 1

] [
n′i
1

])2

. (6)

Here, ξ ∈ R6 holds the three angles and three translation com-
ponents to reconstruct

T (ξ) =
[
R(ξ) t(ξ)
01×3 1

]
∈ SE(3). (7)

It can be shown quickly that the second part of (6) is related
to T (ξ):

T−T (ξ) =
[

R 03×1
−t⊤R 1

]
. (8)

Therefore, (6) is equivalent to

argmin
ξ


[

ni

di − d′i

]
− T−T (ξ)

[
n′i
1

]
︸                       ︷︷                       ︸

=:ei


2

, (9)

such that ei can be used as argument of

ξ∗ = argmin
ξ
ρ
(
||ei(ξ)||22

)
, (10)

a function that is then to be minimized. Here ρ(s) = log(1+ s)
is used for robustness purposes.

As the second, iterative approach provides a better perfor-
mance facing noise and/or outliers (Zúñiga Nöel et al., 2017),
this method will be used for the calibration approach in Sec-
tion 4.

Figure 2: Test setup used for the experiment: RGB-D device (Orbbec Astra)
in the middle, two RGB sensors (Logitech C922 Pro) left and right

4. Experimental setup

For the experiment, we chose a mixed setup featuring an
RGB-D sensor, hereafter labeled as D, and two RGB sensors
(C1 and C2), all operating at a frame rate of 30 Hz and a res-
olution of 640 × 360. The cameras were mounted on an alu-
minum frame as shown in Figure 2. Camera D was placed
between and above C1 and C2, with the two latter slightly
tilted around their Y-axes, pointing inward.

To leverage the capability of detecting multiple planes
in both sensor types, the test environment featured two de-
tectable planes. These planes were equipped with checker-
boards to enable detection by the RGB sensors, as described
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Figure 3: Mean rotation (left) and translation error (right) for different sample sizes of plane correspondences (lower means better), the calibration was executed
20 times for each sample size with a random set of plane matches

in Section 3.1. Also, there is no need to label the checker-
boards. Since an intial estimation is provided, the assignment
of the planes is possible by estimating the coordinate transfor-
mation to the other system.

Using this setup, data containing about 60 plane corre-
spondences for every sensor pair was recorded simultane-
ously by moving the camera rig by hand and detecting the
two planes from different points of view (see Figure 4). This
means that from one synchronized image set featuring three
sensor pairs with two plane observations each, a maximum of
six plane correspondences can be extracted.

Due to the quadratic increasing error and bias of the depth
camera with distance to the observed scene, the frame was
kept close to the observed surfaces (0.5 - 1.5 m) during the
recording. This approach should keep the total error (uncer-
tainty and bias) of the used data within the range of ± 10 mm
(Giancola et al., 2018).

Figure 4: Camera rig recording plane data from the floor and a wall equipped
with one checkerboard each

5. Results

To properly check the implemented method, we utilize a
technique that does not rely on knowing the exact relative
poses of the sensors (ground truth). This was achieved by
calibrating the three cameras with respect to each other, re-
sulting in three transformations (see Figure 1). In the exact
case, this closed-loop transformation Tloop = [Rloop | tloop] (e.g.
D −→ C1 −→ C2 −→ D), Rloop should be a 3 × 3 identity
matrix for rotation and a zero-vector for translation. Any de-
viation from this ideal indicates an error.

To quantify this, we define the rotation error (εR) as the
Frobenius norm of the difference between the computed rota-
tion matrix (Rloop) and the identity matrix (I3×3)

εR = ||Rloop − I3×3||F ,

while the translation error (εt) is defined as the Euclidean dis-
tance of the translation vector (tloop) from the origin:

εt = ||tloop||2

Using the recorded dataset mentioned in Section 4, we
evaluated how well the method performed with different num-
bers of plane matches: 3, 5, 10, 20, 30, and 40 correspon-
dences. Each evaluation was repeated 20 times using random
sets of correspondences from the dataset.

The results shown in Figure 3 indicate that both, the ro-
tation and translation error drop rapidly when working with
10 plane correspondences. More plane matches do not lead to
significantly better results. It can be observed that the trans-
lation error reaches the single-digit millimeter range, which
is within the previously mentioned error bounds of ± 10 mm
(Giancola et al., 2018). This indicates that the method con-
verges successfully, providing a high level of accuracy. Fur-
thermore, the rotation error also shows a strong decrease with
an increasing number of correspondences, stabilizing after 10
correspondences. This rapid convergence suggests that the
method is both efficient and reliable.



D. X. Aigner et al. / Jornadas de Automática, 45 (2024)
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Figure 5: Errors of the three rotation angles for different sample sizes of cor-
respondences

Figure 5 presents a detailed analysis of the rotation error,
breaking it down into angles. The observed behavior aligns
with expectations. Since the rotation of the setup around the
X-axis (which is perpendicular to the aluminum profile, as de-
picted in Figure 1) is negligible in all transformations, the ini-
tial estimation of 0° is highly accurate. Consequently, the er-
ror is small even for samples involving 3 or 5 plane matches.
The behavior of the other angles mirrors that of the overall
rotation error depicted in Figure 3.

Our study enables a partial comparison with the method
outlined in Zúñiga Nöel et al. (2017). Like our approach,
theirs employed a setup with three sensors. However, their
experiment was restricted to RGB-D sensors, what might ex-
plain that larger errors were encountered and therefore causes
a tenfold difference in error magnitudes between our results
and theirs.

6. Conclusion

As seen in the experimental results, our method demon-
strates the level of accuracy achievable with the employed sen-
sor setup. Reliable results are obtained using a minimum of
10 plane correspondences, showcasing its practicality and ef-
fectiveness for extrinsic calibration tasks.

The versatility in data input, accommodating both image
and point cloud data, enhances its applicability for future sce-
narios. For instance, this method could find utility in camera-
LiDAR systems and other similar applications.
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