
Introduction to Control Education with the Unibotics web framework

Garcı́a-Pérez, L.a,∗, Martı́n-Martı́n, D.b, Cañas Plaza, J.M.c, Chacón, J.a, Roldán, D.c

aDpto. de Arquitectura de Computadores y Automática, Facultad de C.C. Fı́sicas, Universidad Complutense, Plaza de las Ciencias 1, 28040 Madrid, Spain.
bÁrea de Tecnologı́a Electrónica, Escuela Superior de Ciencias Experimentales y Tecnologı́a, Universidad Rey Juan Carlos. 28933 Móstoles, Spain

cDpto. de Sistemas Telemáticos y Computación, Universidad Rey Juan Carlos 28942 Madrid, Spain

To cite this article: Garcı́a-Pérez, L., Martı́n-Martı́n, D., Cañas, J.M., Chacón, J., Roldán, D. 2024.Introduction to 
Control Education with the Unibotics web framework.
Jornadas de Automática, 45. https://doi.org/10.17979/ja-cea.2024.45.10933

Abstract

This paper presents the Unibotics platform, a simulation framework for teaching robotics in university courses. It allows
students to program robots from the web browser in Python, using current technologies such as ROS middleware and Gazebo
robotics simulator. Unibotics provides an interface that hides the initial complexity of installing and dealing directly with ROS,
Gazebo or MoveIt and allows students to focus on the algorithmic aspects of robotics. In addition, this article describes two
teaching experiences of using Unibotics with real higher education students to introduce robot control. First, with Computer
Science students in an elective Robotics course at U. Complutense Madrid. Second, with students of ”Automation and Industrial
Robotics” course of Industrial Electronics and Automation Engineering degree at U. Rey Juan Carlos. Both experiences have
been successful and they will be continued in the next course.

Keywords: Internet based teaching of control engineering, E-learning in control engineering, Robotics technology, Robotic
manipulators, Teaching industrial robotics.

1. Introduction

In the current landscape of engineering education, robotics
emerges as a fundamental discipline that integrates knowledge
of mechanics, electronics, computer science and automatic
control. Teaching robotics to engineering students not only
prepares future professionals to face contemporary technolog-
ical challenges Shibata et al. (2021), but also fosters critical
skills such as problem solving, logical thinking and creativity.

One of the crucial aspects of robotics education is the
teaching of control of robotic systems Shibata et al. (2021).
Control is the heart of robotics, as it enables robots to perform
precise and complex tasks by manipulating their actuators in
response to sensor feedback. This mastery of control is es-
sential for students to understand not only how to design and
build robots, but also how to ensure that they operate safely
and efficiently in real-world environments.

Despite the importance of individual practices with com-
plex real robots, these activities are notoriously difficult to im-
plement in an educational environment. Real robots represent

a significant investment in terms of cost and maintenance. In
addition, the complexity of these systems requires constant su-
pervision and a high level of technical knowledge on the part
of instructors, which can be a challenge in classrooms with
many students. These difficulties often limit students’ ability
to interact directly with real robots, which can restrict their
practical understanding and their ability to apply abstract the-
ories to real-world situations.

In this context, it is vital to explore and develop innova-
tive pedagogical methods and tools that facilitate access to
robotics for engineering students. This may include the use
of advanced simulators Tellez (2017); Lopez-Nicolas et al.
(2009), educational robotics platforms and hybrid approaches
Dakeev et al. (2022) that combine theory with practice. In this
way, it is possible to provide comprehensive training that pre-
pares students for the demands of the labour market and the
technological needs of today’s society.

There are several private web online robotics training plat-
forms; all of them use virtual laboratories. Robot Ignite

∗Autor para correspondencia: liagar05@ucm.es
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

https://doi.org/10.17979/ja-cea.2024.45.10933
https://creativecommons.org/licenses/by-nc-sa/4.0/


Garcı́a-Pérez, L. et al. / Jornadas de Automática, 45 (2024)

Academy from The Construct is based on ROS, Gazebo and
Jupyter, and provides several short courses. Riders.ai provides
online robotics courses with real-world applications, includ-
ing drones, and exciting competitions that students can partic-
ipate in. Users only need a browser to access the integrated
development environment where they edit code and run simu-
lations. RobotBenchmark from Cyberbotics provides free ac-
cess to a series of robotics exercises based on Webots simula-
tions which are run in the cloud.

Robots Formation Control Platform (RFCP) is a web-
based interactive environment for experimentation with mo-
bile robots Fabregas et al. (2016). RFCP has an interactive
multi-robot simulator, an experimental environment for work-
ing remotely with real robots, namely the low-cost moway ed-
ucational robots.

Another noteworthy initiative is the Robot Programming
Network (RPN) Cervera et al. (2016); Casañ and Cervera
(2018). It extends existing remote robot laboratories with the
flexibility and power of writing ROS code in a Web browser
and running it on the remote robot on the server side with a
single click.

An additional web learning framework is Unibotics, which
was born offline, then became ROS-based Roldán-Álvarez
et al. (2021) and then online Roldán-Álvarez et al. (2023). It
currently includes morethan 20 exercises and several courses,
for instance about Intelligent Robotics and about Drones.

In this paper we give an overview of the platform and its
application in two different teaching environments: in the op-
tional subject of Robotics in the Computer Science degree at
the Complutense University (UCM) and in the subject of Au-
tomation and Industrial Robotics of the Bachelor’s degree in
Industrial Electronics and Automation Engineering, at the Rey
Juan Carlos University (URJC). It was used by more than 50
real students in total.

2. Unibotics framework

Unibotics is a robot programming web platform with en-
gineering higher education contents Roldán-Álvarez et al.
(2023). It allows the robot programming from the web
browser and uses state-of-the-art robotics tools such as ROS
middleware and Gazebo simulator.

Currently ROS (Robot Operating System) middleware
Quigley et al. (2015); Macenski et al. (2022) has become the
de facto worldwide standard in the robot programming com-
munity. It proposes a distributed component-based paradigm
for robotics applications, they are composed of several ROS
nodes which interoperate among them through typed mes-
sages called ROS topics. The ROS ecosystem includes a
large community, several tools (Rviz, ROSbags, etc.), a col-
lection of drivers and software pieces ready to reuse (Naviga-
tion stack, MoveIt stack for industrial robots, MAVROS for
drones, etc...). It has fostered the software reuse in robotics.

ROS is increasingly being incorporated into more and
more university courses. However, starting to work with ROS
requires a considerable effort that is not feasible in many uni-
versity robotics courses, either because robotics is an elective
subject or because students do not have the necessary com-
puter skills to tackle it in a single semester.

Using Unibotics, almost no installation is required from
Windows, Linux and MacOS computers. More than 20 exer-
cises are currently available on different robotics topics: ser-
vice robotics, autonomous driving, drones, computer vision,
mobile robots and industrial manipulators.

The platform follows the BBS approach: robot Brain,
robot Body and Scenario. For each exercise Unibotics already
provides the Scenario, the robot Body and the task to be solved
(such as cleaning a full room with a vacuum cleaner). The
robot Brain has to be programmed in Python language by the
students, and it is connected to the robot Body which includes
sensors and actuators that are usable through ROS topics.

The main components of Unibotics are: (1) the Robotics
Academy Docker Image, which includes all the robotics soft-
ware already preinstalled; (2) the HTML web page for each
exercise, which is used as the frontend for robot programming
editor and as the Graphical User Interface of execution moni-
toring; and (3) the web backend with the webserver that inter-
connects everything and the databases used to store the usage
information. The web page of each exercise is provided by
the webserver, it includes an inline text editor for the student
and connects to the docker image where the robot application
developed by the user is run.

2.1. Robotics Academy Docker Image
The robotics software is inherently complex, it includes

many components, dependencies, libraries, etc. Before devel-
oping any robot application, many dependencies need to be in-
stalled in the student environment. Usually, when we want to
develop software to use robot sensors and actuators, we need
first to install their drivers. Sometimes robotics students are
focused in learning how the drivers work, but most times the
focus is on robotics algorithms and their implementation. In
this second case, it is really common for the students to spend
some sessions installing all the dependencies. In educational
settings, time is a valuable resources and teachers usually want
the students to work as much as possible without wasting time
on non-educational purposes. Usually some level of expertise
is required in order to install the robotics dependencies locally
and not all of them are available in all Operating Systems.

To avoid installation issues and to reduce the time-to-start-
robot-programming for the students we created the Robotics
Academy Docker Image (RADI). This RADI includes all the
dependencies needed for the exercises that will be provided
by the Unibotics platform. It can be easily installed in Win-
dows, Linux or MacOS, providing this way support to many
operative systems (OS). With the RADI the user only needs
to install Docker and run the container. It manages all the re-
quired robotics software inside a Linux based container. Both
the robot simulator and the students’ code run inside it, in the
user’s computer. This approach follows some of the ideas
in ROSLab Cervera and Del Pobil (2019) which uses ROS,
Jupyter Notebooks and Docker containers for providing re-
producible research environments.

This way the learning curve is reduced for final users, who
only need to focus on programming the algorithms. In this
scenario, the user will need to log in the platform through
any browser, run an exercise and all the connections with the
RADI will be established in order to launch the dependencies
of that exercise and allow the user to send code to the robot



Garcı́a-Pérez, L. et al. / Jornadas de Automática, 45 (2024)

directly. In addition, being the users’ computers the ones run-
ning the simulation, the number of users can grow without
affecting the performance of Unibotics platform itfself. The
simulator runs headless inside the container, regardless the op-
erating system of that computer. The Gazebo simulated world
is displayed at the browser through an gzclient and a VNC
connection with a VNCserver, which also runs inside the con-
tainer. Once an exercise is requested, the exercise.py script
of that exercise starts running. That script is connected to the
Gazebo simulator to get the sensor readings and to set the mo-
tor commands. It runs the source code of the robots’ brain
received from the browser. The RADI and the web platform
are connected through several websockets.

2.2. Exercise frontend
Each exercise has its own HTML webpage. Through the

browser the user can edit the code and send it to the RADI in
order for the robot to execute it. The RADI will send back to
the browser debugging and visual information, where it will
be displayed.

The web page of each exercise is divided in three main
parts as it is shown in Figure 1. In the left side an inline text
editor is be used to write the robot program. The right side is
a view of the simulated world: the scenario. There is also a
debugging console so that the user can print text messages to
debug the exercise code. Some exercises have specific wid-
gets, for example of camera outputs, which also help students
in the development of the code. Then in the top area of the
web page there is a toolbar which is used to implement the ba-
sic operations of the platform: saving the current code, load-
ing the code into the robot, running the simulation, resetting
it, showing and hiding some GUI widgets and two buttons to
evaluate the efficacy of the code and the programming style.

Figure 1: Example of the Vacuum Cleaner exercise web page

2.3. Webserver backend
The webserver provides the web pages of the available ex-

ercises and also to records information about user activity in
the platform. It has been developed using the Python-based
Django framework, Fig. 2. The structural information of
the platform and the users’ interactions are stored in a Post-
greSQL database. In addition, the users’ code is stored in
the Amazon Simple Storage Service (Amazon S3). The web-
server loads the user’s code each time the user enters into an
exercise, and it saves the code automatically every 5 minutes
or when the user orders it.

Typically the RADI runs in the user computer. Another
possibility, which is the one used in the URJC is the use of
a backend computer farm with 120 computers running the
RADI so the students do not have to install anything at all
in their computers, therefore allowing them to directly focus
on programming robots. Once a student connects to an ex-
ercise, the webserver connects the student browser automat-
ically with one of the available computers. The IP address
of the computer to which the student is connected to remains
hidden, since all the required communications (sending code,
receiving images, etc) occur through the webserver itself.

Figure 2: Unibotics architecture

3. PID control using a visual follow line exercise

The Robotics course at UCM’s Faculty of Computer Sci-
ence is an optional course offered to third and fourth year
students of Software Engineering, Computer Engineering and
Video Game Development. The aim of the course is to in-
troduce some of the basic concepts of robotics to students
with no previous knowledge of robotics, control neither sen-
sors. As an optional subject offered at different degrees, stu-
dents may come from a wide variety of backgrounds. Coming
from computer science backgrounds, all students have pro-
gramming skills but no knowledge at all about control theory,
and only some of them have basic knowledge of electronics.

The Robotics course is taught in the autumn term with
two weekly sessions of 1h40m each. One of these sessions is
taught in the laboratory, Fig. 3. Traditionally, the practice of
this subject has only focused on assembling and programming
a do-it-yourself small mobile robot. Working with the robot
is one of the main attractions of the subject and students ap-
preciate learning how to assemble and program the hardware,
despite the heavy workload.

29 students were enrolled in the Autumn 2023-24 course.
In this semester the robot assembly and programming exer-
cises were completed with 3 programming exercises inside the
Unibotics framework: Formula 1 “Follow Line”, “Basic Vac-
uum Cleaner” and the “Obstacle Avoidance”. These exercises
allow students to program more complex robotic behaviours
than those allowed by the hardware they have for the physical
robot.



Garcı́a-Pérez, L. et al. / Jornadas de Automática, 45 (2024)

Figure 3: UCM Robotics Class

One of the first concepts introduced in the course is closed-
loop control. As these are students who have no previous
training in control, signal processing or linear systems, the
aim is not so much for them to learn control as for them to un-
derstand in broad terms what closed-loop control means and
the need for feedback. Without control, there is no way to
approach autonomous behaviour in robotics.

The visual feedback exercise “Follow Line” inside Uni-
botics, Fig. 4, has been used for the didactic purpose of intro-
ducing students to the concepts of feedback control and PID
controllers and their use in robotics. The students’ task in this
exercise is to program an algorithm that will allow the simu-
lated Formula 1 car to complete the circuit without going off
the track. For this purpose, the track is marked with a red
line, so that simple visual feedback can be used to perform the
control.

Figure 4: Unibotics Follow Line Exercise interface

Before starting the practice in a theoretical lesson, the ba-
sic concepts of closed-loop control, setpoint, setpoint tracking
error and PID controller had been worked on in the classroom.
Since the students had no prior knowledge of machine vision
algorithms and the aim was to work on the control part, the
students were provided with the necessary image processing
code. Using the supplied functions, the image is captured,
segmented to obtain the red line and the position in image co-
ordinates of the centre of the line is returned.

The students’ task is to use these functions to obtain feed-
back about the relative position of the car with respect to the
red line marking the centre of the lane and using that feed-
back design, implement and test a PID controller for the robot
angular velocity ω.

u = Kp · e + Ki

∫ t

0
edt + Kd ·

d
dt

e(t) (1)

For this, a basic tuning process is suggested:
1. Program an error-proportional control. Find a value of

the constant Kp that makes the vehicle oscillate around
the red line.

2. Add an integral term and adjust the constant Ki so that
the robot stops oscillating around the centre line

3. Add a derivative term to the controller, adjusting the Kd

constant so that the response is smooth.

All the students managed to program a controller that
made their robots complete the circuit. 7 of them also suc-
cessfully tested the controller with other available circuits
in this Unibotics exercise. One student also implemented a
proportional-to-slice controller to vary the linear velocity in
addition to the one requested for the angular velocity. The
most common problem encountered when correcting practice
is that some students have not actually programmed the re-
quested PID controller, but have made a simple case-based
control.

In general, students were very positive about being able
to program more complex robots in a simple way. Some of
the students’ comments along these lines were: “easy imple-
mentation of test code without having to install ROS”, “the
platform allows you to learn to program and simulate a wide
variety of things. The tutorials are very useful” or “the plat-
form is great”. Negative comments focus on the difficulty of
controlling the cameras and the map.

From the teacher’s point of view, we consider the prac-
tices carried out with Unibotics an essential complement to
the course. In addition, the tutorials and teaching units devel-
oped on the platform greatly facilitate the work of preparing
classes. However, given the students’ limited prior training in
robotics, it is necessary to dedicate more face-to-face time in
class. Next year we will maintain the practices with Unibotics
but we will dedicate more time to them. Specifically, in the
case of the FollowLine practice, more time will be devoted in
the theory class to explain the fundamentals and to carrying
out some more examples.

4. Pick and place with industrial robotic manipulators us-
ing ROS and MoveIt

The Unibotics platform has also been used for teaching an
introductory seminar on industrial robotic manipulators with
ROS and Moveit. The seminar was attended by 24 students
(see Fig. 5). It was conceived as a complementary activity
to the subject of Automation and Industrial Robotics, taught
at the third year of the Bachelor’s degree in Industrial Elec-
tronics and Automation Engineering, at the Rey Juan Carlos
University.

In the first part of this subject students learn the principles
and applications of industrial process automation, as well as
the operation of Programmable Logic Controllers (PLC), their



Garcı́a-Pérez, L. et al. / Jornadas de Automática, 45 (2024)

hardware architectures and their programming fundamentals.
In the second part, the course reviews the morphology, config-
uration and applications of an industrial robot, as well as the
different components of an complete industrial robotic station:
end effectors, power, control and communication subsystems,
safety considerations, etc. The subject also covers the study
of the direct, inverse and differential kinematics of the robotic
manipulator.

In addition, several laboratory sessions are carried out.
In them, students learn to program real industrial hard-
ware, including SIEMENS SIMATIC S7-1200 PLCs, FESTO
MPS203 production lines and both traditional (ABB IRB120)
and collaborative (ABB CRB15000) industrial robots, with
both static tools and grippers. All the software programming
is done using proprietary industrial frameworks (SIEMENS
Totally Integrated Automation Portal and ABB Robotstudio).

Figure 5: Seminar on industrial manipulators with Unibotics, URJC

However, the official syllabus of the course does not cover
programming using tools and simulators based on open source
software, as ROS, MoveIt or Gazebo. The advantages of this
alternative approach are multiple and complementary to what
has been seen in the course, since it allows: i) the use of
conventional programming languages (C++ and/or Python),
ii) apply the code to almost any commercial hardware brand,
iii) use several trajectory planning algorithms, iv) a fast and
easy integration of computer vision and/or artificial intelli-
gence tools, and v) the extension to mobile robotic manipu-
lators.

Therefore, the goal of the seminar was to complete a pick
and place exercise with a simulated ABB IRB120 6-axis an-
gular robotic arm and a Robotiq 2f-85 two-finger articulated
gripper, classifying different objects initially placed in a static
conveyor (see Fig. 6). The objects could be classified by color
or shape using four colored drawers. To complete the task,
students were provided with a Python API including key com-
ponents to command the robot with pose messages to make its
end effector frame move to the desired pose via inverse kine-
matics, to generate MoveIt grasp messages, open and close
the gripper, send the robot back to the Home pose, etc. In ad-
dition, the ROS 3D graphical visualizer (RViz) could be used
to preview the complete robot trajectory before each motion
execution.

Figure 6: Gazebo world of the pick and place exercise in Unibotics

Regarding the seminar results, it is worth noting that the
use of the Unibotics platform allowed a much more efficient
use of the time available, as none of the required software
components had to be installed. In general, all the students
showed great interest in this open source programming alter-
native and, though only a few of them completed the exercise,
they all indicated that they would continue to work on it on
their own and become a little more familiar with the use of
ROS and MoveIt for programming industrial robots.

5. Conclusions

In this article we have presented the Unibotics platform,
a simulation framework for teaching robotics in university
courses. Unibotics allows web-based programming and offers
the possibility for students to deal with complex environments
and robots. Together with the brief description of the platform,
two very different didactic experiences are presented. The
first case explains the development of an introductory control
practice for Computer Science students at the Complutense
University in a robotics elective course using the Unibotics
line-following exercise. The second experience is an intro-
ductory seminar on programming industrial robots with ROS
and MoveIt as part of the subject Automation and Industrial
Robotics, taught at the third year of the Bachelor’s degree in
Industrial Electronics and Automation Engineering, at the Rey
Juan Carlos University.

In both cases the use of Unibotics has allowed students
to acquire basic robotics knowledge, i.e. PID controller and
programming using ROS and MoveIt, which without the web
framework provided by Unibotics would have been impossi-
ble to address in both courses. In addition, the use of the simu-
lation environment has allowed the students to work individu-
ally, which would otherwise have been completely impossible
due to the cost of the robots that have been programmed.

We currently have three lines of work in progress. On
the one hand, the improvement of the Unibotics platform,
migrating all practices to ROS2 and generating new scenar-
ios, robots and exercises that expand its possibilities. Second,
we are working on including gamification aspects into Uni-
botics, such as robotics competitions Fernández-Ruiz et al.
(2022), and on including an intelligent tutor to help the teacher
in classroom management answering text-based student ques-
tions. Third, we are trying to expand the community of users



Garcı́a-Pérez, L. et al. / Jornadas de Automática, 45 (2024)

to other Spanish universities. A large community of open
source developers contributes to keep alive and constantly im-
proves this platform that we consider to be very useful for both
control students and teachers.

Acknowledgments

This work is partially supported by INSERTION pro-
jec t (PID2021-27648OB-C33) of the Knowledge Generation
program of the Ministry of Science and Innovation, and by
the UNIBOTICS-GAM project Ref. TED2021-132632B-I00,
from Proyectos de Transición Ecológica y Transición Digital
2021 call Spain. Authors also appreciate the help of Google
for improving RoboticsAcademy through the Google Summer
of Code program since 2017.

References

Casañ, G. A., Cervera, E., 2018. The experience of the robot programming
network initiative. Journal of Robotics 2018.

Cervera, E., Del Pobil, A. P., 2019. ROSlab: Sharing ROS code interac-
tively with docker and jupyterlab. IEEE Robotics and Automation Mag-
azine 26 (3), 64–69.
DOI: 10.1109/MRA.2019.2916286

Cervera, E., Martinet, P., Marin, R., Moughlbay, A. A., Del Pobil, A. P., Ale-
many, J., Esteller, R., Casan, G., 2016. The robot programming network.
Journal of Intelligent & Robotic Systems 81 (1), 77–95.

Dakeev, U., Pecen, R. R., Yildiz, F., Basith, I. I., Obeidat, S. M., Sowell,
L. E., May 2022. Development of virtual reality robotics laboratory sim-
ulation. In: 2022 ASEE Zone IV Conference. No. 10.18260/1-2–44729.
ASEE Conferences, Vancouver, https://peer.asee.org/44729.

Fabregas, E., Farias, G., Dormido-Canto, S., Guinaldo, M., Sánchez, J.,
Dormido Bencomo, S., 2016. Platform for teaching mobile robotics. Jour-
nal of Intelligent & Robotic Systems 81, 131–143.

Fernández-Ruiz, R., Palacios, D., Cañas, J., Roldán, D., 2022. Automatic
Competitions in the Unibotics open online robot programming web. Pro-
ceedings of Robot2022.

Lopez-Nicolas, G., Romeo, A., Guerrero, J. J., 2009. Simulation tools for ac-
tive learning in robot control and programming. In: 2009 EAEEIE Annual
Conference. pp. 1–6.
DOI: 10.1109/EAEEIE.2009.5335490

Macenski, S., Foote, T., Gerkey, B., Lalancette, C., Woodall, W., 2022. Robot
operating system 2: Design, architecture, and uses in the wild. Science
Robotics 7 (66), eabm6074.

Quigley, M., Gerkey, B., Smart, W. D., 2015. Programming Robots with ROS:
a practical introduction to the Robot Operating System. ” O’Reilly Media,
Inc.”.

Roldán-Álvarez, D., Cañas, J. M., Valladares, D., Arias-Perez, P., Mahna, S.,
2023. Unibotics: open ros-based online framework for practical learning
of robotics in higher education. Multimedia Tools and Applications.
DOI: 10.1007/s11042-023-17514-z

Roldán-Álvarez, D., Mahna, S., Cañas, J. M., 2021. A ROS-based Open Web
Platform for Intelligent Robotics Education. International Conference on
Robotics in Education (RiE). Springer, pp. 243–255.

Shibata, M., Demura, K., Hirai, S., Matsumoto, A., 2021. Comparative study
of robotics curricula. IEEE Transactions on Education 64 (3), 283–291.
DOI: 10.1109/TE.2020.3041667

Tellez, R., 2017. A thousand robots for each student: Using cloud robot sim-
ulations to teach robotics. In: Merdan, M., Lepuschitz, W., Koppensteiner,
G., Balogh, R. (Eds.), Robotics in Education. Springer International Pub-
lishing, Cham, pp. 143–155.


	Introduction
	Unibotics framework
	Robotics Academy Docker Image
	Exercise frontend
	Webserver backend

	PID control using a visual follow line exercise
	Pick and place with industrial robotic manipulators using ROS and MoveIt
	Conclusions

