Main Article Content

Irene Varela Vila
Grupo AQUATERRA, Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña, España
Spain
https://orcid.org/0009-0006-8231-8072
Antonio Paz González
1 Grupo AQUATERRA, Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña
Spain
https://orcid.org/0000-0001-6318-8117
Marcos Lado Liñares
Grupo AQUATERRA, Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña, España
Spain
https://orcid.org/0000-0001-6996-0964
Eva Vidal Vázquez
Grupo AQUATERRA, Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña, España
Spain
https://orcid.org/0000-0002-1413-9949
Gabriela Cristina Sarti
Departamento de Recursos Naturales y Medio Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, Argentina
Argentina
https://orcid.org/0009-0007-0400-0891
Vol. 46 (2024), Articles, pages 33-49
DOI: https://doi.org/10.17979/cadlaxe.2024.46.11400
Submitted: Nov 17, 2024 Accepted: Dec 16, 2024 Published: Dec 20, 2024
Copyright How to Cite

Abstract

Soil properties may exhibit an important spatial variability between neighboring samples.  In agricultural soils, there is a need to assess the presence of potential limiting factors and their variability. The aim of this work was to evaluate the statistical variability of the main soil general properties and micronutrients of a vineyard soil from samples collected along a small transect. On this transect, which was located on a field from the Ribeiro Origin Determination, 65 soil samples were taken at a between-sample distance of 0.8 m. The general soil properties studied were texture, pH, organic matter content and exchange complex attributes. In additions, total concentrations and available concentrations extracted by Mehlich 3 and DTPA solutions of four micronutrients, namely Fe, Mn, Cu and Zn, were also determined. The soil texture ranged from loamy to sandy loam. Mean soil pH was 5.30, mean organic matter content was 2.31% and mean cationic exchange capacity was 7.56 cmol(+)kg-1 of soil. The coefficients of variation of sand, silt and clay fractions, pH, organic matter and cation exchange capacity were smaller than 10% and were classified as low, however the remaining soil properties showed CVs ranging from 10% to 20% and were classified as medium. The concentrations of total micronutrients and available micronutrients extracted with Mehlich 3 ranked as: Fe > Mn > Cu > Zn, while concentrations extracted with DTPA ranked as: Fe > Cu > Mn > Zn. Cooper accumulation was found to be the main limiting factor for wine production. Moreover, an imbalance of the Mg/K ratio in segments of the transect was evidenced. The pH and organic matter content showed relatively low values and therefore liming and increasing use of organic manures are recommended. Summarizing, the used experimental design allowed to evaluate soil quality state and to recognize the soil properties that act as production limiting factors.

Downloads

Download data is not yet available.

Article Details

References

Abreu, C.A.D., van Raij, B., Gabe, V., Abreu, M.F.D., Paz-González, A. 2002. Efficiency of multinutrient extractants for the determinig of available Zn in soils. Communications in Soil Science and Plant Analysis 33 (15-18), 3313–3324. https://doi.org/10.1081/CSS-120014525 DOI: https://doi.org/10.1081/CSS-120014525

Abreu, C.A.D., van Raij, B., Abreu, M.F.D., Paz González, A. 2005. Routine soil testing to monitor heavy metals and Boron. Scientia Agricola 62 (6), 564–571. https://doi.org/10.1590/S0103-90162005000600009 DOI: https://doi.org/10.1590/S0103-90162005000600009

Arias, M., López, E., Fernández, D., Soto, B. 2004. Copper distribution and dynamics in acid vineyard soils treated with copper-based fungicides. Soil Science 169, 796–805. https://doi.org/10.1097/01.ss.0000148739.82992.59 DOI: https://doi.org/10.1097/01.ss.0000148739.82992.59

Calvo, R., Macias, F. 1992. Aptitud agronómica de los suelos de la Provincia de La Coruña. (Cultivos, Pinos, Robles, Eucaliptos y Castaños). Editorial Diputación Provincial de A Coruña: A Coruña. 88 pp.

Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin. T.B., Karlen, D.L., Turco, R.F., Konopka, A.E. 1994. Field-scale varibility of soil properties in central Iowa soils. Soil Science Society of America Journal 58 (5), 1501-1511. https://doi.org/10.2136/sssaj1994.03615995005800050033x DOI: https://doi.org/10.2136/sssaj1994.03615995005800050033x

Caridad Cancela, R., Vidal Vázquez, E., Vieira, S.R., Abreu, C.A., Paz González, A. 2005. Assessing the spatial uncertainty of mapping trace elements in cultivated fields. Communications in Soil Science and Plant Analysis 36 (1-3), 253–274. https://doi.org/10.1081/CSS-200043078 DOI: https://doi.org/10.1081/CSS-200043078

Cesco, S., Pii, Y., Borruso, L., Orzes, G., Lugli, P., Mazzetto, F., Genova, G., Signorini, M., Brunetto, G., Terzano, R., Vigani, G., Mimmo, T. 2021. A Smart and Sustainable Future for Viticulture Is Rooted in Soil: How to Face Cu Toxicity. Applied Science 11 (3), 907. https://doi.org/10.3390/app11030907 DOI: https://doi.org/10.3390/app11030907

Dafonte Dafonte, J., Guitián Ulloa, M., Paz-Ferreiro, J., Siqueira Machado, G., Vidal Vázquez, E. 2010. Mapping of soil micronutrients in an European Atlantic agricultural landscape using ordinary kriging and indicator approach. Bragantia 69, 175–186. https://doi.org/10.1590/S0006-87052010000500018 DOI: https://doi.org/10.1590/S0006-87052010000500018

Fernández-Calviño, D., López-Periago, E., Nóvoa-Muñoz, J.C., Arias-Estévez, M. 2008. Short scale distribution of copper fractions in a vineyard acid soil. Land Degradation and Developrment 19, 190–197. https://doi.org/10.1002/ldr.833 DOI: https://doi.org/10.1002/ldr.833

Fernandez-Calviño, D., Novoa-Munoz, J.C., Diaz-Ravina, M., Arias-Estevez, M. 2009. Cooper accumulation and fractionation in vineyard soils, from temperate humid zone (NW Iberian Peninsula). Geoderma 153 (1-2), 119–129. https://doi.org/10.1016/j.geoderma.2009.07.024 DOI: https://doi.org/10.1016/j.geoderma.2009.07.024

Fernández-Calviño, D., Garrido-Rodríguez, B., López-Periago, J. E., Paradelo, M., Arias-Estévez, M. 2013. Spatial distribution of copper fractions in a vineyard soil. Land Degradation and Development, 24 (6), 556–563. https://doi.org/10.1002/ldr.1150 DOI: https://doi.org/10.1002/ldr.1150

Fernández Marcos. M. L. 2011, Metales pesados en el suelo. López-Mosquera, M. E., Sáinz Osés, M. J., (eds.), Gestión de residuos orgánicos de uso agrícola. 33–48. Universidade de Santiago de Compostela. ISBN 978-84-9887-822-6.

García-Tomillo, A., Mirás-Avalos, J.M., Dafonte-Dafonte, J., Paz González, A. 2017. Estimating soil organic matter using interpolation methods with an electromagnetic induction sensor and topographic parameters: a case study in a humid region. Precision Agriculture 18 (5), 882–897. https://doi.org/10.1007/s11119-016-9481-6 DOI: https://doi.org/10.1007/s11119-016-9481-6

García-Tomillo, A., da Silva Dias, R., Vidal Vázquez, E., Varela Vila, I., Valcárcel Armesto, M., Dafonte-Dafonte, J., Paz-González, A. 2020. Multifractal and joint multifractal description of available nutrients concentrations extracted by two methods along short transects. Archives of Agronomy and Soil Science 66 (2), 236–249. https://doi.org/10.1080/03650340.2019.1608954 DOI: https://doi.org/10.1080/03650340.2019.1608954

Guitián, F., Carballas, T. 1976. Técnicas de análisis de suelos. 2ª edición. Ed. Pico Sacro. Santiago de Compostela. 288 pp.

Ingaramo, O.E., Paz-Ferreiro, J., Mirás Avalos, J.M., Vidal Vázquez, E. 2007. Caracterización de las propiedades generales del suelo en una parcela experimental con distintos sistemas de laboreo. Cadernos do Laboratorio Xeoloxico de Laxe 32, 127–137.

IUSS-WRB Working Group. 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 236 pp.

Kabata-Pendias, A., Pendias, H. 2001. Trace Elements in Soils and Plants. 3rd Edition, CRC Press, Boca Raton. 403 pp. DOI: https://doi.org/10.1201/9781420039900

Lindsay, W.L., Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal 42, 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x DOI: https://doi.org/10.2136/sssaj1978.03615995004200030009x

Macías Vázquez, F., Calvo de Anta, R. (2009). Niveles genéricos de referencia de metales pesados y otros elementos traza en suelos de Galicia. Xunta de Galicia. Santiago de Compostela. 232 pp.

McBratney, A. B., Webster, R 1981, Spatial dependence and classification of the soil along a transect in northeast Scotland. Geoderma 26 (1-2), 63–82. https://doi.org/10.1016/0016-7061(81)90076-8 DOI: https://doi.org/10.1016/0016-7061(81)90076-8

Mehlich, A. 1984. Mehlich-3 soil test extractant: A modification of Mehlich-2 extractant. Communications in Soil Science and Plant Analysis 15, 1409–1416. https://doi.org/10.1080/00103628409367568 DOI: https://doi.org/10.1080/00103628409367568

Paz-Ferreiro, J., Pereira de Almedia, V., Alves, M.C., de Abreu, C.A., Vieira, S.R., Vidal Vázquez, E. 2016. Spatial variability of soil organic matter and cation exchange capacity in an Oxisol under different land uses. Communications in Soil Science and Plant Analysis 47, 75–89. https://doi.org/10.1080/00103624.2016.1232099 DOI: https://doi.org/10.1080/00103624.2016.1232099

Paz González, A., Taboada Castro, Mª. T. and Gómez Suárez, Mª. J. 1996. Spatial variability on topsoil micronutrient content on a one-hectare scale. Communications in Soil Science and Plant Analysis 27 (3-4), 479–503. https://doi.org/10.1080/00103629609369570 DOI: https://doi.org/10.1080/00103629609369570

Paz-González, A., Vieira, S.R., Taboada Castro, M.T. 2000. The effect of cultivation on the spatial variability of selected properties of an umbric horizon. Geoderma 97, 273–292. https://doi.org/10.1016/S0016-7061(00)00066-5 DOI: https://doi.org/10.1016/S0016-7061(00)00066-5

Raij, B. Van, Andrade, J.C., Cantarella, H., Quaggio, J.A. 2001. Análise química para avaliação da fertilidade de solo tropicais. Campinas: Instituto Agronômico, Campinas, Brasil. 285 pp.

Sanchez, P.A., Palm, C.A., Buol, S.W. 2003. Fertility capability soil classification: A tool to help assess soil quality in the tropics. Geoderma 114, 157–185. https://doi.org/ 10.1016/S0016-7061(03)00040-5 DOI: https://doi.org/10.1016/S0016-7061(03)00040-5

Silva, E. F. F., García-Tomillo, A., Da Silva e Souza, D., Vidal Vázquez, E., Machado Siqueira, E., Da Costa Dantas, D., Paz González, A. 2021. Multifractal and joint multifractal analysis of soil micronutrients extracted by two methods along a transect in a coarse textured soil. European Journal f Soil Science 73 (2), 608–622. https://doi.org/10.1111/ejss.13052 DOI: https://doi.org/10.1111/ejss.13052

Soil Survey Staff. 2022. Keys to Soil Taxonomy, 13th edition. USDA Natural Resources Conservation Service. 410 pp.

Trangmar, B.B., Yost, R.S., Wehara, G. 1985. Application of geostatistics to spatial studies of soil properties. Advances in Agronomy 28, 45-94. https://doi.org/10.1016/S0065-2113(08)60673-2 DOI: https://doi.org/10.1016/S0065-2113(08)60673-2

Ulloa Guitián, M., Abreu, C. A., Paz-González, A. 2001. Disponibilidad de macro- y micronutrientes en un suelo de cultivo de Mabegondo (A Coruña). Cadernos do Laboratorio Xeolóxico de Laxe 26, 243–254.

Varela Vila, I. 2022. Impacto del cultivo de la vid en la variabilidad espacial de las propiedades químicas de un suelo de la Denominación de Origen Ribeiro. Tesis Doctoral. Universidade da Coruña. 145 pp.

Varela Vila, I., Cardenas-Aguiar, E. M., Lado Liñares, M., Paz González, A., Vidal Vázquez. E. 2023. Análisis geoestadístico de macroelementos, microelementos y metales pesados extraídos con Mehlich-3 en una microparcela de viñedo. Cadernos do Laboratorio Xeolóxico de Laxe 45, 59–74. https://doi.org/10.17979/cadlaxe. 2023.45.0.10120 DOI: https://doi.org/10.17979/cadlaxe.2023.45.0.10120

Vázquez-Blanco, R., González-Feijoo, R., Campillo-Cora, C., Fernández-Calviño, D., Arenas-Lago, D. 2023. Risk Assessment and Limiting Soil Factors for Vine Production—Cu and Zn Contents in Vineyard Soils in Galicia (Rías Baixas D.O.). Agronomy 13, 309. https://doi.org/10.3390/agronomy13020309 DOI: https://doi.org/10.3390/agronomy13020309

Vidal-Vazquez, E., Caridad-Cancela, R., Taboada-Castro, M.M., Paz-Gonzalez, A., de Abreu, C.A. 2005. Trace elements extracted by DTPA and Mehlich-3 from agricultural soils with and without compost additions. Communications in Soil Science and Plant Analysis 46 (4-6), 717–727. https://doi.org/10.1081/CSS-200043354 DOI: https://doi.org/10.1081/CSS-200043354