O depósito de Sn-Li asociado a granito de gran tonelaxe da Argemela, Portugal central
Contido principal do artigo
Resumo
The Argemela Sn-Li quartz vein stockwork, east of the Panasqueira tungsten mine, is hosted in Cambrian slates and greywacke. An underlying Variscan granitic cupola is inferred from spotted slates and albitic microgranite dykes, the last including a thick modified albitic microgranite, enriched in F and Li, exposed some 500 m away, on the hill top. Inferred resources for shallowest deposit portion are 20.1 million tonnes (Mt) at 0.1-0.2% Sn, 0.2% Li and 0.1% (estimate) Rb, but the 650-m vertical-extent of the deposit suggests a resource of >200 Mt (with identical grades). The hydrothermal paragenetic sequence is amblygonite-montebrasite (mostly montebrasite) (Stage I)–quartz I-II–cassiterite (with columbite-tantalite inclusions)─arsenopyrite I─carbonate I-white mica I ─chlorite I–fluorite–apatite–rutile (Stage II)– white mica II–molybdenite– tourmaline– carbonate II-quartz III–arsenopyrite II–sphalerite–stannite–chalcopyrite–pyrite– pyrrhotite-chlorite II (Stage III)–covellite– vivianite–goethite/lepidocrocite (Stage IV). Amblygonite-montebrasite is the main Li carrier; Sn is evenly distributed between cassiterite and stannite; Rb is mostly in white mica (with 0.25-1.23 wt % Rb2O in the hill-top albitic microgranite). Primary aqueous, 1-3 um-wide fluid inclusions in the deposit in quartz I, carbonate I, apatite and cassiterite growth zones yield overall salinities and homogenisation temperatures of 7.2-19.1 wt % NaCl equiv. and 290-360ºC, respectively. The trace concentrations (electronic microprobe analysis) in quartz vein cassiterite reach 1.95 wt % Nb, 0.39 wt % Fe, 0.13 wt % Ti, and low/negligible values of Sb, Zn, As, Ag and Bi showing its granite-hydrothermal affiliation. Fe-poor and Fe-rich sphalerite (lower-intermediate and upper deposit parts) contain 1.0-1.6 and 7.9-9.4 wt % Fe, 64.3-66.0 and 55.9-57.2 wt % Zn, 0.4-0.5 and 0.9-1.1 wt % Cd, respectively. The sphalerite-stannite geothermometer yields temperatures of 245-297ºC. Following higher temperature amblygonite-montebrasite deposition (Stage I), hydrothermal fluids (aCl-=0.25 m), related to the hidden granitic cupola, at a mean pressure-corrected (50 MPa) temperature of 350ºC, were responsible for Stage II minerals deposition. Calculated cassiterite deposition from Sn chloride complexes occurred likewise, from probable magmatic-hydrothermal fluids, at fO2 = 10-34 -10-32 atm and pH=3.5-4. Cassiterite deposition mechanisms were oxidation, mixing, neutralisation, possible aCl- increase, and cooling. Later Fe-poor sphalerite (+kesterite/ferrokesterite) and Fe-rich sphalerite (+stannite) deposited at higher and lower fS2, respectively, the latter probably at a higher fO2 (Stage III). The uniqueness of Argemela system with abundant amblygonite-montebrasite in hydrothermal quartz tin veins may be related to an extreme fractionated F-, Li- and P-rich granitic magma. After the emplacement of the granite/albitic microgranite dykes, an emerging pegmatitic fluid was unable, possibly due to insufficient depth, to form pegmatites but only modified the hill-top albitic microgranite. As a consequence, the system, where mixing of high- and low-salinity magmatic fluids probably occurred, remained very enriched in F, Li and P and by the time the hydrothermal stockwork developed amblygonite-montebrasite (Stage I) was the first mineral to deposit abundantly before Stage II minerals deposition in those Argemela Sn-Li quartz veins.
Descargas
Detalles do artigo
Citas
Antunes, I.M.H.R., Neiva, A.M.R., Silva, M.M.V.G., Silva, P.B. (2010). Mineralogy of Li-bearing granitic aplite-pegmatite veins from Segura. In: Neiva, J.M.C., Ribeiro, A., Victor, M., Noronha, F., Ramalho M., eds., Ciências Geológicas. Ensino e Investigação e sua História. Associação Portuguesa de Geólogos. Sociedade Geológica de Portugal, v. I, cap. 1 (Cristalografia e Mineralogia), p. 3-14.
Audétat, A., Günther, D., Heinrich, C.A. (2000). Causes for large-scale metal zoning around mineralized plutons: Fluid inclusion LA-ICP-MS evidence for the Mole Granite, Australia. Economic Geology, 95:1563-1581.
Audétat, A., Pettke, T., Heinrich, C.A., Bodnar, R.J. (2008). The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions, Economic Geology, 103:877-908.
Azevedo, M.R., Aguado, B.V., Nolan, J., Martins, M.E., Medina, J. (2005). Origin and emplacement of syn-orogenic Variscan granitoids in Iberia: the Beiras massif. Journal of the Virtual Explorer, 19:1-17.
Bailey, S.W. (1980). Summary of recommendations of the AIPEA Nomenclature Committee. Canadian Mineralogist, 18:143-150.
Barnes, H.L. (1979). Solubilities of ore minerals. In: Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits, 2nd ed. New York (NY), John Wiley & Sons, p. 404-460.
Barton, P.B., JR., Skinner, S.D. (1967). Sulfide mineral stabilities. In: Barnes. H.L., ed., Geochemistry of hydrothermal ore deposits, 1st ed. New York (NY), Holt, Rinehart and Winston Inc., p. 236-333.
Baumann, L. (1970). Tin deposits of the Erzgebirge. Institution of Mining and Metallurgy Transactions, section B, 79:68-75.
Bayliss, P. (1975). Nomenclature of the trioctahedral chlorites. Canadian Mineralogist, 13:178-180.
Bodnar, R.J. (1993). Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57:683-684.
Bodnar, R.J. (2003). Introduction to fluid inclusions. In: Samson, I., Anderson, A. and Marshall, D., eds., Fluid inclusions: Analysis and interpretation. Mineralogical Association of Canada Short Course Series 32, p. 1-8.
Bodnar, R.J., Reynolds, T.J., Kuehn, C.A. (1985). Fluid-inclusion systematics in epithermal systems. Reviews in Economic Geology, 2:73-97.
Bussink, R.W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit. Geologica Ultraiectina, 33, 170 p.
Carvalho, D. (1977). Lineament patterns and hypogene mineralization in Portugal. Estudos, Notas e Trabalhos do Serviço de Fomento Mineiro, 23(3-4):91-103.
Cerná, I., Cerný, P., Ferguson, R.B. (1972). The Tanco pegmatite at Bernie Lake, Manitoba. III. Amblygonite-montebrasite. Canadian Mineralogist, 11:643-659.
Cerný, P. (1991a). Rare-element granitic pegmatites – Part II: Regional and global environments and petrogenesis. Geoscience Canada, 18(2):68-81.
Cerný, P. (1991b). Rare-element granitic pegmatites – Part I: Anatomy and internal evolution of pegmatite deposits. Geoscience Canada, 18(2):49-67.
Cerný, P., Ercit, T.S. (2005). The classification of granitic pegmatites revisited. Canadian Mineralogist, 43:2005-2026.
Charoy, B., Noronha, F. (1996). Multistage growth of a rare-element, volatile-rich microgranite at Argemela (Portugal). Journal of Petrology, 37:73-94.
Conde, L., Santarém, R. (1976). Exemplo de aplicação geológica de imagens de teledetecção de Portugal. Seminário sobre a Detecção Remota e sua aplicação ao estudo dos recursos naturais e às actividades do homem. Lisboa, Dez. 1976, Documento 18, 7 pp.
Cox, D.P., Singer, D.A., eds. (1986). Mineral deposit models. U. S. Geological Survey Bulletin, 1693, 379 p.
Craig, J.R., Scott, S.D. (1974). Sulfide phase equilibria. Mineralogical Society of America Short Course Notes, 1, p. CS1-CS10.
Cuney, M., Marignac, C., Weisbrod, A. (1992). The Beauvoir topaz-lepidolite albite granite (Massif Central, France): The disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Economic Geology, 87:1766-1794.
De Carvalho, C.N., Hamilton, T.G. (2017). Notas sobre a ocorrência excepcional de turquesas (fosfato hidratado de cobre e alumínio) no Cabeço da Argemela (Fundão/Covilhã). AÇAFA (Associação de Estudos do Alto Tejo) On Line nr. 12. https://www.altotejo.org/
Deer, W.A., Howie, R.A., Zussman, J. (1992). An introduction to the rock-forming minerals, 2nd ed., Essex (UK), Longman.
Dias, G., Simões, P.P., Mendes, A.C. (2006). Instalação de rochas graníticas variscas na ZCI: geocronologia e sequências tipológicas. VII Congresso Nacional de Geologia, Estremoz (Évora), Univ. Évora, Livro de Resumos , vol. III, p. 1227-1229.
Dias, R., Moreira, N., Ribeiro, A., Basile, C. (2017). Late Variscan deformation in the Iberian Peninsula; a late feature in the Laurentia-Gondwana dextral collision. International Journal of Earth Sciences, 106(2): 549-597.
Dias, R., Ribeiro, A., Romão, J., Coke, C., Moreira, N. (2016). A review of the arcuate structures in the Iberian Variscides: constraints and genetic models. Tectonophysics, 681: 170-194.
Dubessy, J., Ramboz, C., Nguyen-Trung, C., Cathelineau, M., Charoy, B., Cuney, M., Leroy, J., Poty, B., Weisbrod, A. (1987). Physical and chemical controls (fO2, T, pH) of the opposite behaviour of U and Sn-W as exemplified by hydrothermal deposits in France and Great-Britain, and solubility data. Bulletin de Minéralogie, 110: 261-281.
Dudykina, A.S. (1959). Paragenetic associations of trace elements in cassiterites of various types of tin deposits. Moscow, Akademiya Nauk USSR, Trudy Instituta Geologii Rudnykh Mestorozhdeniyi, Petrografii, Mineralogii I Geokhimii, 28: 111-121. Russian; English abstract in Mineralogical Abstracts, 1961, v. 15, p. 105.
Eadington, P.J. (1983). Calculated solubilities of cassiterite in high temperature hydrothermal brines, and some applications to mineralization in granitic rocks and skarns. In: Somiya, S., ed., Proceedings of 1st International Symposium on Hydrothermal Reactions, March 1982, Tokyo, Japan, Association for Science Documents, Tokyo Institute of Technology, p. 335-345.
Eadington, P.J., Giblin, A. (1979). Alteration minerals and the precipitation of tin in granitic rocks. CSIRO, Institute of Earth Resources, Division of Mineralogy, Sydney, Australia, Technical Communication, 68:1-31.
Eckstrand, O.R. (1984). Canadian mineral deposit types: A geological synopsis. Geological Survey of Canada. Economic Geology Report, 36:53-54.
Eugster, H.P., Wilson, G.A. (1985). Transport and deposition of ore-forming elements in hydrothermal systems associated with granites. In: Halls, C. ed., Proceedings of the Institution of Mining and Metallurgy “High heat production (HHP) granites, hydrothermal circulation and ore genesis” Conference, St. Austell, Sept. 1985, Cornwall (UK). Institution of Mining and Metallurgy, London (UK), p. 87-95.
Ferraz, P. (2007). 3º Relatório de actividades (para a DGEG) do contrato de prospecção e pesquisa de Sn-W-Li-Cu-Pb-Zn-Au-Ag-pirites para a área da Argemela da Beralt Tin and Wolfram Portugal (BTWP). Covilhã (Portugal), BTWP, Ag. 2007, 22 p.
Ferraz, P. (2008a). 4º Relatório de actividades (para a DGEG) do contrato de prospecção e pesquisa de Sn-W-Li-Cu-Pb-Zn-Au-Ag-pirites para a área da Argemela da Beralt Tin and Wolfram Portugal (BTWP). Covilhã (Portugal), BTWP, Fev. 2008, 16 p.
Ferraz, P. (2008b). 5º Relatório de actividades (para a DGEG) do contrato de prospecção e pesquisa de Sn-W-Li-Cu-Pb-Zn-Au-Ag-pirites para a área da Argemela da Beralt Tin and Wolfram Portugal (BTWP). Covilhã (Portugal), BTWP, Ag. 2008, 17 p.
Ferraz, P., Rodrigues, B.C., Oliveira, A., Ramos, J.F. (2010). Resultados da campanha de prospecção do jazigo de Sn-Li de Argemela. Livro de Resumos (Abstracts Book) do VII Congresso Nacional de Geologia, Univ. Minho, Braga, Portugal, p. XIII-3; e ainda e-Terra (Geosciences On-line Journal), 20(5):1-4; English abstract.
Gaspar, L.M.G.G. (1991). Alguns aspectos mineralógicos e texturais de filões fosfatados (Argemela, Fundão). Lisboa, Faculdade Ciências, Univ. Lisboa, monografia interna, 29 p.
Geological Map Of Portugal (Carta Geológica De Portugal), escala 1:1 000 000 (2010). Alfragide (Portugal), Laboratório Nacional de Energia e Geologia (LNEG).
Goldstein, R.H., Reynolds, T.J. (1994). Systematics of fluid inclusions in diagenetic minerals. Tulsa (Oklahoma): Society for Sedimentary Geology (SEPM) Short Course No. 31, 314 p.
Groat, L.A., Chakoumakos, B.C., Brouwer, D.H., Hoffman, C.M., Fyfe, C.A., Morell, H., Schultz, A.J. (2003). The amblygonite (LiAlPO4F)-montebrasite (LiAlPO4OH) solid solution: A combined powder and single-crystal neutron diffraction and solid-state 6Li MAS, CP MAS, and REDOR NMR study. American Mineralogist, 88:195-210.
Haapala, I., Kinnunen, K. (1979). Fluid inclusions in cassiterite and beryl in greisen veins in the Eurajoki Stock, Southwestern Finland. Economic Geology, 74:1231-1238.
Hall, M.R., Ribbe, P.H. (1971). An electrode microprobe study of luminescence centers in cassiterite. American Mineralogist, 56: 31-45.
Halter, W.E., Williams-Jones, A.E., Kontak, D.J. (1996). The role of greisenization in cassiterite precipitation at the East Kemptville tin deposit, Nova Scotia. Economic Geology, 91:368-385.
Halter, W.E., Williams-Jones, A.E., Kontak, D.J. (1998). Origin and evolution of the greisenizing fluid at the East Kemptville tin deposit, Nova Scotia, Canada. Economic Geology, 93:1026-1051.
Heinrich, C.A. (1990). The chemistry of tin(-tungsten) ore deposition. Economic Geology, 85:457-481.
Heinrich, C.A., Eadington, P.J. (1986). Thermodynamic predictions of the hydrothermal chemistry of arsenic, and their significance for the paragenetic sequence of some cassiterite-arsenopyrite, base metal sulfide deposits. Economic Geology, 81:511-529.
Hosking, K.F.G. (1959). A geochemical reconnaissance survey at Minas da Argemela, Portugal: Camborne School of Mines Magazine, 59:5-10.
Hu Shouxi, Sun Mingzi, Yan Zhengfu, Xu Jinfang, Cao Xiaoyun, Ye Ying (1982). An important metallogenetic model for W, Sn and rare granitophile element ore deposits related to metasomatically altered granites. In: Xu Keqin and Tu Guangchi, eds., Proceedings of International Symposium on “Geology of granites and their metallogenetic relations”, Nanjing, 1982. Beijing (China), Science Press, p. 519-537.
Inverno, C. (1980). Estudo geológico-estrutural e sondagens nas Minas da Argemela. Lisboa, Serviços Geológicos de Portugal, relatório interno, 17 p.
Inverno, C.M.C., Ribeiro M.L. (1980). Fracturação e cortejo filoniano nas Minas da Argemela. Comunicações Serviços Geológicos de Portugal, 66:185-193.
Inverno, C.M.C. (1998). Comments on the new findings on the geology, geochemistry and mineralization of Argemela. Comunicações Instituto Geológico e Mineiro, 85:73-79.
Inverno, C.M.C., Ferraz, P.J.V., Moreira, M.E. (2009). Argemela, a high-tonnage Sn-Li deposit in Central Portugal. Abstracts with Programs of the Geological Society of America Annual Meeting, Portland (Oregon), Oct. 2009. 41(7), p. 680.
Inverno, C.M.C., Hutchinson, R.W. (2004). The endogranitic tin zone, Mount Pleasant, New Brunswick, Canada and its metallogenesis. Applied Earth Science, 113:261-288.
Inverno, C.M.C., Hutchinson, R.W. (2006). Petrochemical discrimination of evolved granitic intrusions associated with Mount Pleasant deposits, New Brunswick, Canada. Applied Earth Science, 115:23-39.
Inverno, C.M.C., Solomon, M., Barton, M.D., Foden, J. (2008). The Cu stockwork and massive sulfide of the Feitais volcanic-hosted massive sulfide deposit, Aljustrel, Iberian Pyrite Belt, Portugal: A mineralogical, fluid inclusion, and isotopic investigation. Economic Geology, 103:241-267.
Jackson, K.J., Helgeson, H.C. (1985a). Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin: I. Calculation of the solubility of cassiterite at high pressures and temperatures. Geochimica et Cosmochimica Acta, 49:1-22.
Jackson, K.J., Helgeson, H.C. (1985b). Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin: II. Interpretation of phase relations in the Southeast Asian Tin Belt. Economic Geology, 80:1365-1378.
Jones, W.R. (1972). General geology and the mineralization at Argimela. Appendix in: Streets CG, Minas da Argemela, Portugal. Covilhã (Portugal), Beralt Tin and Wolfram, relatório interno, 3 pp.
Kamilli, R.J., Criss, R.E. (1996). Genesis of the Silsilah tin deposit, Kingdom of Saudi Arabia. Economic Geology, 91:1414-1434.
Kelly, W.C. (1977). The relative timing of metamorphism, granite emplacement and hydrothermal ore deposition in Panasqueira district (Beira Baixa, Portugal). Comunicações Serviços Geológicos de Portugal, 61:239-244.
Kelly, W.C., Rye, R.O. (1979). Geologic, fluid inclusion, and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal. Economic Geology, 74:1721-1819.
Kissin, S.A. (1989). A reinvestigation of the stannite (Cu2FeSnS4) – kesterite (Cu2ZnSnS4) pseudobinary system. Canadian Mineralogist, 27:689-697.
Koide, H., Bhattacharji, S. (1975). Formation of fractures around magmatic intrusions and their role in ore localization. Economic Geology, 70:781-799.
Kranidiotis, P., Maclean, W.H. (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology, 82:1898-1911.
Lattanzi, P., Corazza, M., Corsini, F., Tanelli, G. (1989). Sulfide mineralogy in the polymetallic cassiterite deposits of Dachang, P. R. China. Mineralium Deposita, 24:141-147.
Lehmann, B. (1990). Metallogeny of tin. In: Bhattacharji, S., Friedman, G.M., Neugebauer, H.J. and Seilacher, A., eds. Berlin, Springer-Verlag, Lecture Notes in Earth Sciences, No. 32, 211 p.
Linnen, R.L. (1998). Depth of emplacement, fluid provenance and metallogeny: a comparison of western Thailand with other tin belts. Mineralium Deposita, 33(5):461-476.
London, D., Manning, D.A.C. (1995). Chemical variation and significance of tourmaline from Southwest England. Economic Geology, 90:495-519.
London, D., Wolf, M.B., Morgan VI, G.B., Garrido, M.G. (1999). Experimental silicate-phosphate equilibria in peraluminous granitic magmas, with a case study of the Albuquerque Batholith at Tres Arroyos, Badajoz, Spain. Journal of Petrology, 40:215-240.
Lu, H.-Z., Liu Yimao, Wang Changlie, Xu Youzhi, Li Huaqin (2003). Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan province, China. Economic Geology, 98:955-974.
Lusk, J., Ford, C.E. (1978). Experimental extension of the sphalerite geobarometer to 10 kbar. American Mineralogist. 63:516-519.
Martins, F.J.C.T. (2017). Indicadores geoquímicos na prospecção de W e Sn: estudo aplicado à mina de Vale Pião, Góis. Tese de Mestrado em Geologia Económica, Faculdade de Ciências, Univ. Lisboa, 79 p.
Materikov, M.P. (1977). Deposits of tin. In: Smirnov, V.I., ed., Ore deposits of the USSR. London (UK), Pitman Publishing, v. 3, p. 229-294.
Mateus, A., Noronha, F. (2010). Sistemas mineralizantes epigenéticos na Zona Centro-Ibérica; exptressão da estruturação orogénica meso- a tardi-Varisca. In: Neiva, J.M.C., Ribeiro, A., Victor, M., Noronha, F. and Ramalho M., eds., Ciências Geológicas – Ensino e Investigação e sua História. Associação Portuguesa de Geólogos – Sociedade Geológica de Portugal, v. II (Geologia Aplicada), cap. I (Geologia e Recursos Geológicos), p. 47-61.
Michaud, J., Marcoux, E., Pichavant, M., Gumiaux, C., Gloagen, E. (2017). From rare metal granite to Sn-W-Li-Nb-Ta mineralizations: results on Argemela (Central Portugal). Goldschmidt 2017 abstracts. https://goldschmidt.info/2017/abstracts/abstractView?id=2017003996
Migdisov, A.A., Williams-Jones, A.E. (2005). An experimental study of cassiterite solubility in HCl-bearing water vapour at temperatures up to 350ºC. Implications for tin ore formation. Chemical Geology, 217:29-40.
Müller, B., Seward, T.M. (2001). Spectrophotometric determination of the stability of tin(II) chloride complexes in aqueous solution up to 300ºC. Geochimica et Cosmochimica Acta, 65( 22):4187-4199.
Müller, B., Frischknecht, R., Seward, T.M., Heinrich, C.A., Gallegos, W.C. (2001). A fluid inclusion reconnaissance study of the Huanuni tin deposit (Bolivia), using LA-ICP-MS micro-analysis. Mineralium Deposita, 36:680-688.
Nakamura, Y., Shima, H. (1982). Fe and Zn partitioning between stannite and sphalerite. Abstracts of the Joint Meeting of the Society of Mining Geologists of Japan, the Mineralogical Society of Japan and the Japanese Association of Mineralogists, Petrologists and Economic Geologists, A-8.
Neiva, A.M.R. (1996). Geochemistry of cassiterite and its inclusions and exsolution products from tin and tungsten deposits in Portugal. Canadian Mineralogist, 34:745-768.
Nekrasov, I.J., Sorokin, V.I., Osadchii, E.G. (1979). Fe and Zn partitioning between coexisting stannite and sphalerite and its application in geothermometry. In: Ahrens, L.H., ed., Origin and distribution of the elements. Pergamon Press, p. 739-742.
Nikulin, N.N. (1969). The distribution of indium, niobium, and scandium in the cassiterites of the Khingan deposit. Leningrad Univ., Vesta, No. 6, Geol. Geogr., No. 1, p. 81-87, and Mineralogical Abstracts, 20, p. 108.
Noronha, F., Dória, A., Dubessy, J., Charoy, B. (1992). Characterization and timing of the different types of fluids present in the barren and ore-veins of the W-Sn deposit of Panasqueira, Central Portugal. Mineralium Deposita. 27:72-79.
Noronha, F., Ribeiro, M.A., Almeida, A., Dória, A., Guedes, A., Lima, A., Martins, H.C., Sant’Ovaia, H., Nogueira, P., Martins, T. et al. (2013). Jazigos filonianos hidrotermais e aplitopegmatíticos espacialmente associados a granitos (norte de Portugal). In: Dias, R., Araújo, A., Terrinha, P. and Kullberg, J.C., eds., Geologia de Portugal. Lisboa, Escolar Editora, v. 1, 403-438.
Norris, D. (1962). Report on history of operations in Argemela. Covilhã (Portugal), Beralt Tin and Wolfram, relatório interno.
Oosterom, M.G. (1988). The geochemistry of granitoid-related tin and tungsten deposits in orogenic belts. In: Hutchison, C.S., ed., Geology of tin deposits in Asia and the Pacific. Berlin, Springer-Verlag, p. 187-199.
Oosterom, M.G., Bussink, R.W., Vriend, S.P. (1984). Lithogeochemical studies of aureoles around the Panasqueira tin-tungsten deposit, Portugal. Mineralium Deposita, 19:283-288.
Pabalan, R.T. (1986). Solubility of cassiterite (SnO2) in NaCl solutions from 200ºC - 350ºC, with geologic applications. PhD dissertation, State College (PA), Pennsylvania State University, 141 p.
Palache, C., Berman, H., Frondel, C. (1951). The system of mineralogy. New York (NY), John Wiley and Sons; v. 2, 1124 p.
Parra, A.A.H.N. (1988). Jazida estano-volframítica de Vale Pião. Aspectos geológicos e cálculo preliminar de reservas. Lisboa, Serviço de Fomento Mineiro, relatório interno, 64 p.
Patterson, D.J., Ohmoto H.H., Solomon, M. (1981). Geologic setting and genesis of cassiterite-sulfide mineralization at Renison Bell, Western Tasmania. Economic Geology, 76:393-438.
Peacor, D.R., Dunn, P.J., Roberts, W.L., Campbell, T.J., Simmons, W.B. (1984). Sinkankasite, a new phosphate from the Barker pegmatite, South Dakota. American Mineralogist, 69:380-382.
Pohl, W., Günther, M.A. (1991). The origin of Kibaran (late Mid-Proterozoic) tin, tungsten and gold quartz vein deposits in Central Africa: a fluid inclusion study. Mineralium Deposita, 26:51-59.
Polya, D.A. (1989). Chemistry of the main-stage ore-forming fluids of the Panasqueira W-Cu(Ag)-Sn deposit, Portugal: Implications for models of ore genesis. Economic Geology, 84:1134-1152.
Potter II, R.W. (1977). Pressure corrections for fluid-inclusion homogenization temperatures based on the volumetric properties of the system NaCl-H2O. U.S. Geological Survey Journal of Research, 5:603-607.
Potter II, R.W., Brown, D.L. (1977). Preliminary steam tables for NaCl solutions – the volumetric properties of aqueous sodium chloride solutions from 0ºC to 500ºC at pressures up to 2000 bars on a regression of available data in the literature. U.S. Geological Survey Bulletin, 1421-C, 36 p.
Ren, S.K., Walshe, J.L., Paterson, R.G., Both, R.G., Andrew, A. (1995). Magmatic and hydrothermal history of porphyry-style deposits of the Ardlethan tin field, New South Wales, Australia. Economic Geology, 90:1620-1645.
Ribeiro, A., Conde, L., Carvalho, D. (1974). Relatório da visita às Minas da Argimela: Beja, Serviço de Fomento Mineiro (Portugal), relatório interno, 8 p.
Ribeiro, A., Pereira, E. (1982). Controles paleogeográficos, petrológicos e estruturais na génese dos jazigos portugueses de estanho e volfrâmio. Geonovas, 1(3):23-31.
Roda-Robles, E., Gil-Crespo, P., Lima, A., Pesquera, A., Vieira, R., Martins, T. (2011). Pegmatites from the Central Iberian and Galizia-Trás-os-Montes zones (Iberian Massif) (Spain and Portugal): Characteristics and exploration significance for Li and other rare-elements, In: Martins, L.M.P., de Oliveira, D.P.S., Silva, R., Viegas, H.M.C. and Bôas, R.C.V., eds., Valorização de pegmatitos litiníferos. Lisboa (Portugal), DGEG/LNEG/ADI/CYTED, p. 67-68.
Roda-Robles, E., Pesquera, A., Gil-Crespo, P., Vieira, R., Lima, A., Garate-Olave, I., Torres-Ruiz, J., Martins, T. (2016). Geology and mineralization in the Central Iberian Zone (Spain and Portugal). Mineralogical Magazine, 80(1):103-126.
Roedder, E. (1984). Fluid inclusions. Reviews in Mineralogy, 12, 646 p.
Roedder, E., Bodnar, R.J. (1980). Geologic pressure determinations from fluid inclusion studies. Annual Review of Earth and Planetary Sciences. 8:263-301.
Romão, J., Metodiev, D., Dias, R., Ribeiro, A. (2013). Evolução geodinâmica dos sectores meridionais da Zona Centro-Ibérica. In: Dias, R., Araújo, A., Terrinha, P.and Kullberg, J.C., eds., Geology of Portugal. Lisboa, Escolar Editora, v. 1, p. 205-257.
Santarém, R. (1983). Interpretação fotogeológica da região centro de Portugal. Estruturas circulares e fracturas com base em imagens do Satélite Landsat 2. Estudos, Notas e Trabalhos do Serviço de Fomento Mineiro, 25(3-4):227-245.
Sant’Ovaia, H., Nogueira, P., Lopes, J.C., Gomes, C. (2015). Building up of a nested granite intrusion: magnetic fabric, gravity modelling and fluid inclusion planes studies in Santa Eulália Plutonic Complex (Ossa Morena Zone, Portugal). Mineralogical Magazine, 152(4):648-667.
Shcherba, G.N. (1970). Greisens. International Geology Review, 12:114-150, 239-255.
Schermerhorn, L.J.G. (1982). Framework and mineralization of Hercynian mineralization in the Iberian Meseta. Comunicações Serviços Geológicos de Portugal, 68(1):91-140.
Scott, S.D., Kissin, S.A. (1973). Sphalerite composition in the Zn-Fe-S system below 300ºC. Economic Geology, 68:475-479.
Sheperd, T.J., Miller, M.F. (1988). Fluid inclusion volatiles as a guide to tungsten deposits, southwest England: Applications to other Sn-W provinces in western Europe. In: Boissonnas, J. and Omenetto, P., eds., Mineral deposits within the European Community. Berlin (Germany), Springer-Verlag, p. 29-52.
Sheperd, T.J., Rankin, A.H., Alderton, D.H.M. (1985). A practical guide to fluid inclusion studies. Glasgow (UK), Blackie & Son, 239 p.
Sheppard, S.M.F. (1981). Stable isotope geochemistry of fluids. Physics Chemistry Earth, 13-14:165-184.
Shigley, J.E., Brown, G.E., JR. (1985). Occurrence and alteration of phosphate minerals at the Stewart Pegmatite, Pala District, San Diego County, California. American Mineralogist, 70:398-408.
Shimizu, M., Shikazono, N. (1985). Iron and zinc partitioning between coexisting stannite and sphalerite: a possible indicator of temperature and sulfur fugacity. Mineralium Deposita, 20:314-320.
Sinclair, W.D., Kooiman, G.J.A., Martin, D.A., Kjarsgaard, I.M. (2006). Geology, geochemistry and mineralogy of indium resources at Mount Pleasant, New Brunswick, Canada. Ore Geology Reviews, 28:123-145.
Siorminp (2002). Sistema de Informação de Ocorrências e Recursos Mineiros Portugueses (Coords., A. Parra e A. Filipe). Alfragide, Instituto Geológico e Mineiro: 2164 deposits.
Springer, G. (1972). The pseudobinary system Cu2FeSnS4 - Cu2FeSnS4, and its mineralogical significance. Canadian Mineralogist, 27:689-697.
Stemprok, M. (1984). Genetic types of tin deposits in the north-western part of the Bohemian Massif of Czechoslovakia. Abstracts of the Chinese Academy of Geological Sciences “International Symposium on Geology of Tin Deposits”, Beijing, China, 1984, p.12-13.
Steveson, B.G., Taylor, R.G. (1973). Trace element content of some cassiterites from eastern Australia. Proceedings Royal Society Queensland, 84:43-54.
Streets, C.G. (1972), Minas da Argimela, Portugal: Covilhã (Portugal), Beralt Tin and Wolfram, relatório interno, 20 p.
Taylor, R.G. (1979). Geology of tin deposits. Amsterdam: Elsevier, Developments in Economic Geology, 11, 543 p.
Taylor, R.G., Wall, V.J. (1993). Cassiterite solubility, tin speciation and transport in a magmatic aqueous phase. Economic Geology, 88:437-469.
Thadeu, D. (1951). Geology of the Panasqueira mining district. Comunicações Serviços Geológicos de Portugal, 32:5-64.
Thadeu, D. (1965). Carta Mineira de Portugal, 1:500 000. Notícia Explicativa. Lisboa, Serviços Geológicos de Portugal, 46 p.
Wagner, T., Mlynarczyk, M.S.J., Williams-Jones, A.E., Boyce, A.J. (2009). Stable isotope constraints on ore formation at the San Rafael tin-copper deposit, southeast Peru. Economic Geology, 94:223-248.
Whyte, W.J. (1973). Minas da Argimela, Portugal: Ore reserve summary. Covilhã (Portugal), Beralt Tin and Wolfram, relatório interno, 12 p.
Wilson, G.A., Eugster, H.P. (1990). Cassiterite solubility and tin speciation in supercritical chloride solutions. Geochemical Society Special Publication 2, 179-195.
Wright, J.H., Kwak, T.A.P. (1989). Tin-bearing greisens of Mount Bischoff, Northwestern Tasmania, Australia. Economic Geology, 84:551-574.
Zane, A., Weiss, Z. (1998). A procedure for classifying chlorites based on microprobe data. Rendiconti Lincei. Academia dele Szienze Fisiche e Naturali, 9 (9), 51-56.