Filtrado de luz azul con mínima distorsión para vídeo
Contenido principal del artículo
Resumen
La luz azul presente en los dispositivos móviles tienen una función reguladora del organismo en procesos como el sueño o el hambre. Además, la exposición directa está asociada con el desarrollo o empeoramiento de ciertas enfermedades y para las personas con alguna afección específica puede resultar molesta y peligrosa. Muchos dispositivos del mercado poseen sistemas de filtrado para atajar esta situación, pero modifican significativamente la mayoría de colores. Este trabajo propone un nuevo procedimiento para reducir la representación de color o Gamut de la pantalla correspondiente a las emisiones más energéticas, para poder evitarlas. El resultado llega a absorciones del 100%, respetando el contraste, la calidad y la mayor parte de colores de la imagen, consiguiendo un resultado lo más realista posible. La propuesta se considera de interés para su aplicación en tiempo real en dispositivos de proyección de vídeo, como por ejemplo los dispositivos de realidad aumentada y virtual.
Palabras clave:
Detalles del artículo
Citas
Baker, J., Putnam, N., Kozlowski, R. E., Anderson, M., Bird, Z., Chmielewski, J., Meske, J., Steinshouer, N., Kozlowski, M. R., 6 2022. Effects of chronic, daily exposures to low intensity blue light on human retinal pigment epithelial cells: Implications for the use of personal electronic devices. Journal of Photochemistry and Photobiology 10. DOI: 10.1016/j.jpap.2022.100118 DOI: https://doi.org/10.1016/j.jpap.2022.100118
Bowmaker, J. K., Dartnall, H., 1980. Visual pigments of rods and cones in a human retina. The Journal of physiology 298 (1), 501–511. DOI: 10.1113/jphysiol.1980.sp013097 DOI: https://doi.org/10.1113/jphysiol.1980.sp013097
Calvo-Sanz, J. A., Tapia-Ayuga, C. E., 2020. Blue light emission spectra of popular mobile devices: The extent of user protection against melatonin suppression by built-in screen technology and light filtering software systems. Chronobiology International 37 (7), 1016–1022. DOI: 10.1080/07420528.2020.1781149 DOI: https://doi.org/10.1080/07420528.2020.1781149
Chan, Y.-J., Hsiao, G., Wan, W.-N., Yang, T.-M., Tsai, C.-H., Kang, J.-J., Lee, Y.-C., Fang, T.-C., Cheng, Y.-W., Li, C.-H., 2023. Blue light exposure collapses the inner blood-retinal barrier by accelerating endothelial cldn5 degradation through the disturbance of gnaz and the activation of adam17. Fluids and Barriers of the CNS 20 (1), 31. DOI: 10.1186/s12987-023-00430-7 DOI: https://doi.org/10.1186/s12987-023-00430-7
Chiu, H. P., Liu, C. H., 1 2020. The effects of three blue light filter conditions for smartphones on visual fatigue and visual performance. Human Factors and Ergonomics In Manufacturing 30, 83–90. DOI: 10.1002/hfm.20824 DOI: https://doi.org/10.1002/hfm.20824
Driller, M. W., Jacobson, G., Uiga, L., 2019. Hunger hormone and sleep responses to the built-in blue-light filter on an electronic device: A pilot study. Sleep Science 12, 171–177. DOI: 10.5935/1984-0063.20190074 DOI: https://doi.org/10.5935/1984-0063.20190074
Escofet, J., Bará, S., 6 2017. Reducing the circadian input from self-luminous devices using hardware filters and software applications. Lighting Research and Technology 49, 481–496. DOI: 10.1177/1477153515621946 DOI: https://doi.org/10.1177/1477153515621946
f.lux, 2015. Software to make your life better. https://justgetflux.com/.
Hecht, I., Kanclerz, P., Achiron, A., Elbaz, U., Tuuminen, R., 2023. The effect of blue-light filtering intraocular lenses on the development and progression of glaucoma. Journal of Glaucoma 32 (6), 451–457. DOI: 10.1097/IJG.0000000000002220 DOI: https://doi.org/10.1097/IJG.0000000000002220
Jin, H. L., Jeong, K. W., 2022. Transcriptome analysis of long-term exposure to blue light in retinal pigment epithelial cells. Biomolecules & Therapeutics 30 (3), 291. DOI: 10.4062/biomolther.2021.155 DOI: https://doi.org/10.4062/biomolther.2021.155
Kahu, S. Y., Raut, R. B., Bhurchandi, K. M., 2019. Review and evaluation of color spaces for image/video compression. Color Research & Application 44 (1), 8–33. DOI: https://doi.org/10.1002/col.22291
Kawamura, S., Tachibanaki, S., 2012. Explaining the functional differences of rods versus cones. Wiley Interdisciplinary Reviews: Membrane Transport and Signaling 1 (5), 675–683. DOI: 10.1002/wmts.8 DOI: https://doi.org/10.1002/wmts.8
Kozlowski, M. R., 3 2021. Blue light-induced retinal damage: a brief review and a proposal for examining the hypothetical causal link between person digital device use and retinal injury. Medical Hypothesis, Discovery & Innovation in Optometry 1, 129–134. DOI: 10.51329/mehdioptometry118 DOI: https://doi.org/10.51329/mehdioptometry118
Lin, C. W., Yang, C. M., Yang, C. H., 5 2019. Effects of the emitted light spectrum of liquid crystal displays on light-induced retinal photoreceptor cell damage. International Journal of Molecular Sciences 20. DOI: 10.3390/ijms20092318 DOI: https://doi.org/10.3390/ijms20092318
Mittal, A., Moorthy, A. K., Bovik, A. C., 2012a. No-reference image quality assessment in the spatial domain. IEEE Transactions on image processing 21 (12), 4695–4708. DOI: 10.1109/TIP.2012.2214050 DOI: https://doi.org/10.1109/TIP.2012.2214050
Mittal, A., Soundararajan, R., Bovik, A. C., 2012b. Making a “completely blind” image quality analyzer. IEEE Signal processing letters 20 (3), 209–212. DOI: 10.1109/LSP.2012.2227726 DOI: https://doi.org/10.1109/LSP.2012.2227726
Moon, J., Yun, J., Yoon, Y. D., Park, S.-I., Seo, Y.-J., Park, W.-S., Chu, H. Y., Park, K. H., Lee, M. Y., Lee, C. W., et al., 2017. Blue light effect on retinal pigment epithelial cells by display devices. Integrative Biology 9 (5), 436–443. DOI: 10.1039/c7ib00032d DOI: https://doi.org/10.1039/C7IB00032D
Moyano, D. B., Sola, Y., Gonz ́alez-Lezcano, R. A., 8 2020. Blue-light levels emitted from portable electronic devices compared to sunlight. Energies 13. DOI: 10.3390/en13164276 DOI: https://doi.org/10.3390/en13164276
Note, A. T., 1974. Proposal for study of color spaces and difference equations. J. Opt. Soc. Am. (64), 896. of Standardization ISO, I. O., 2013. Iso 12647-2:2013(en) graphic technology — process control for the production of half-tone colour separations, proof and production prints — part 2: Offset lithographic processes. https://www.iso.org/obp/ui/en/#iso:std:iso:12647:-2:ed-3:v1:en.
Parraga, C. A., Akbarinia, A., 03 2016. Nice: A computational solution to close the gap from colour perception to colour categorization. PLOS ONE 11 (3), 1–32. DOI: 10.1371/journal.pone.0149538 DOI: https://doi.org/10.1371/journal.pone.0149538
Rockid, 2024. Rockid air. https://air.rokid.com/.
Rougetet, A., 2020. Landscape pictures. https://www.kaggle.com/datasets/arnaud58/landscape-pictures.
Smith, T., Guild, J., 1931. The cie colorimetric standards and their use. Transactions of the optical society 33 (3), 73. DOI: 10.1088/1475-4878/33/3/301 DOI: https://doi.org/10.1088/1475-4878/33/3/301
Sroga, M., Dóspiał, M., Gacek, M., 2 2019. The effectiveness of eye protection application against harmful blue radiation in modern mobile devices. Acta Physica Polonica A 135, 162–165. DOI: 10.12693/APhysPolA.135.162 DOI: https://doi.org/10.12693/APhysPolA.135.162
Studio, C., 2024. video. https://www.pexels.com/es-es/video/moda-arte-mujer-pared-7510036/.
Venkatanath, N., Praneeth, D., Bh, M. C., Channappayya, S. S., Medasani, S. S., 2015. Blind image quality evaluation using perception based features. In: 2015 twenty first national conference on communications (NCC). IEEE, pp. 1–6. DOI: 10.1109/NCC.2015.7084843 DOI: https://doi.org/10.1109/NCC.2015.7084843