Contenido principal del artículo

Juan Bayón Fernández
Universidad Complutense de Madrid
España
Joaquín Recas Piorno
Universidad Complutense de Madrid
España
https://orcid.org/0000-0001-9935-7496
Jonathan José Jiménez Jiménez
Universidad Complutense de Madrid
España
https://orcid.org/0009-0006-0766-2527
María Guijarro Mata-García
Universidad Complutense de Madrid
España
https://orcid.org/0000-0002-2966-9512
Núm. 45 (2024), Visión por Computador
DOI: https://doi.org/10.17979/ja-cea.2024.45.10771
Recibido: may. 27, 2024 Aceptado: jul. 1, 2024 Publicado: jul. 24, 2024
Derechos de autor

Resumen

La luz azul presente en los dispositivos móviles tienen una función reguladora del organismo en procesos como el sueño o el hambre. Además, la exposición directa está asociada con el desarrollo o empeoramiento de ciertas enfermedades y para las personas con alguna afección específica puede resultar molesta y peligrosa. Muchos dispositivos del mercado poseen sistemas de filtrado para atajar esta situación, pero modifican significativamente la mayoría de colores. Este trabajo propone un nuevo procedimiento para reducir la representación de color o Gamut de la pantalla correspondiente a las emisiones más energéticas, para poder evitarlas. El resultado llega a absorciones del 100%, respetando el contraste, la calidad y la mayor parte de colores de la imagen, consiguiendo un resultado lo más realista posible. La propuesta se considera de interés para su aplicación en tiempo real en dispositivos de proyección de vídeo, como por ejemplo los dispositivos de realidad aumentada y virtual.

Detalles del artículo

Citas

Baker, J., Putnam, N., Kozlowski, R. E., Anderson, M., Bird, Z., Chmielewski, J., Meske, J., Steinshouer, N., Kozlowski, M. R., 6 2022. Effects of chronic, daily exposures to low intensity blue light on human retinal pigment epithelial cells: Implications for the use of personal electronic devices. Journal of Photochemistry and Photobiology 10. DOI: 10.1016/j.jpap.2022.100118 DOI: https://doi.org/10.1016/j.jpap.2022.100118

Bowmaker, J. K., Dartnall, H., 1980. Visual pigments of rods and cones in a human retina. The Journal of physiology 298 (1), 501–511. DOI: 10.1113/jphysiol.1980.sp013097 DOI: https://doi.org/10.1113/jphysiol.1980.sp013097

Calvo-Sanz, J. A., Tapia-Ayuga, C. E., 2020. Blue light emission spectra of popular mobile devices: The extent of user protection against melatonin suppression by built-in screen technology and light filtering software systems. Chronobiology International 37 (7), 1016–1022. DOI: 10.1080/07420528.2020.1781149 DOI: https://doi.org/10.1080/07420528.2020.1781149

Chan, Y.-J., Hsiao, G., Wan, W.-N., Yang, T.-M., Tsai, C.-H., Kang, J.-J., Lee, Y.-C., Fang, T.-C., Cheng, Y.-W., Li, C.-H., 2023. Blue light exposure collapses the inner blood-retinal barrier by accelerating endothelial cldn5 degradation through the disturbance of gnaz and the activation of adam17. Fluids and Barriers of the CNS 20 (1), 31. DOI: 10.1186/s12987-023-00430-7 DOI: https://doi.org/10.1186/s12987-023-00430-7

Chiu, H. P., Liu, C. H., 1 2020. The effects of three blue light filter conditions for smartphones on visual fatigue and visual performance. Human Factors and Ergonomics In Manufacturing 30, 83–90. DOI: 10.1002/hfm.20824 DOI: https://doi.org/10.1002/hfm.20824

Driller, M. W., Jacobson, G., Uiga, L., 2019. Hunger hormone and sleep responses to the built-in blue-light filter on an electronic device: A pilot study. Sleep Science 12, 171–177. DOI: 10.5935/1984-0063.20190074 DOI: https://doi.org/10.5935/1984-0063.20190074

Escofet, J., Bará, S., 6 2017. Reducing the circadian input from self-luminous devices using hardware filters and software applications. Lighting Research and Technology 49, 481–496. DOI: 10.1177/1477153515621946 DOI: https://doi.org/10.1177/1477153515621946

f.lux, 2015. Software to make your life better. https://justgetflux.com/.

Hecht, I., Kanclerz, P., Achiron, A., Elbaz, U., Tuuminen, R., 2023. The effect of blue-light filtering intraocular lenses on the development and progression of glaucoma. Journal of Glaucoma 32 (6), 451–457. DOI: 10.1097/IJG.0000000000002220 DOI: https://doi.org/10.1097/IJG.0000000000002220

Jin, H. L., Jeong, K. W., 2022. Transcriptome analysis of long-term exposure to blue light in retinal pigment epithelial cells. Biomolecules & Therapeutics 30 (3), 291. DOI: 10.4062/biomolther.2021.155 DOI: https://doi.org/10.4062/biomolther.2021.155

Kahu, S. Y., Raut, R. B., Bhurchandi, K. M., 2019. Review and evaluation of color spaces for image/video compression. Color Research & Application 44 (1), 8–33. DOI: https://doi.org/10.1002/col.22291

Kawamura, S., Tachibanaki, S., 2012. Explaining the functional differences of rods versus cones. Wiley Interdisciplinary Reviews: Membrane Transport and Signaling 1 (5), 675–683. DOI: 10.1002/wmts.8 DOI: https://doi.org/10.1002/wmts.8

Kozlowski, M. R., 3 2021. Blue light-induced retinal damage: a brief review and a proposal for examining the hypothetical causal link between person digital device use and retinal injury. Medical Hypothesis, Discovery & Innovation in Optometry 1, 129–134. DOI: 10.51329/mehdioptometry118 DOI: https://doi.org/10.51329/mehdioptometry118

Lin, C. W., Yang, C. M., Yang, C. H., 5 2019. Effects of the emitted light spectrum of liquid crystal displays on light-induced retinal photoreceptor cell damage. International Journal of Molecular Sciences 20. DOI: 10.3390/ijms20092318 DOI: https://doi.org/10.3390/ijms20092318

Mittal, A., Moorthy, A. K., Bovik, A. C., 2012a. No-reference image quality assessment in the spatial domain. IEEE Transactions on image processing 21 (12), 4695–4708. DOI: 10.1109/TIP.2012.2214050 DOI: https://doi.org/10.1109/TIP.2012.2214050

Mittal, A., Soundararajan, R., Bovik, A. C., 2012b. Making a “completely blind” image quality analyzer. IEEE Signal processing letters 20 (3), 209–212. DOI: 10.1109/LSP.2012.2227726 DOI: https://doi.org/10.1109/LSP.2012.2227726

Moon, J., Yun, J., Yoon, Y. D., Park, S.-I., Seo, Y.-J., Park, W.-S., Chu, H. Y., Park, K. H., Lee, M. Y., Lee, C. W., et al., 2017. Blue light effect on retinal pigment epithelial cells by display devices. Integrative Biology 9 (5), 436–443. DOI: 10.1039/c7ib00032d DOI: https://doi.org/10.1039/C7IB00032D

Moyano, D. B., Sola, Y., Gonz ́alez-Lezcano, R. A., 8 2020. Blue-light levels emitted from portable electronic devices compared to sunlight. Energies 13. DOI: 10.3390/en13164276 DOI: https://doi.org/10.3390/en13164276

Note, A. T., 1974. Proposal for study of color spaces and difference equations. J. Opt. Soc. Am. (64), 896. of Standardization ISO, I. O., 2013. Iso 12647-2:2013(en) graphic technology — process control for the production of half-tone colour separations, proof and production prints — part 2: Offset lithographic processes. https://www.iso.org/obp/ui/en/#iso:std:iso:12647:-2:ed-3:v1:en.

Parraga, C. A., Akbarinia, A., 03 2016. Nice: A computational solution to close the gap from colour perception to colour categorization. PLOS ONE 11 (3), 1–32. DOI: 10.1371/journal.pone.0149538 DOI: https://doi.org/10.1371/journal.pone.0149538

Rockid, 2024. Rockid air. https://air.rokid.com/.

Rougetet, A., 2020. Landscape pictures. https://www.kaggle.com/datasets/arnaud58/landscape-pictures.

Smith, T., Guild, J., 1931. The cie colorimetric standards and their use. Transactions of the optical society 33 (3), 73. DOI: 10.1088/1475-4878/33/3/301 DOI: https://doi.org/10.1088/1475-4878/33/3/301

Sroga, M., Dóspiał, M., Gacek, M., 2 2019. The effectiveness of eye protection application against harmful blue radiation in modern mobile devices. Acta Physica Polonica A 135, 162–165. DOI: 10.12693/APhysPolA.135.162 DOI: https://doi.org/10.12693/APhysPolA.135.162

Studio, C., 2024. video. https://www.pexels.com/es-es/video/moda-arte-mujer-pared-7510036/.

Venkatanath, N., Praneeth, D., Bh, M. C., Channappayya, S. S., Medasani, S. S., 2015. Blind image quality evaluation using perception based features. In: 2015 twenty first national conference on communications (NCC). IEEE, pp. 1–6. DOI: 10.1109/NCC.2015.7084843 DOI: https://doi.org/10.1109/NCC.2015.7084843