Conector rotacional blando para robots modulares
Contenido principal del artículo
Resumen
Los robots modulares pueden adaptarse dinámicamente a diversas tareas o entornos, lo que los hace versátiles, eficientes y económicos. En este trabajo se propone el diseño de un componente de conexión para generar cadenas modulares flexibles, donde tanto el módulo como el conector son estructuras blandas. El módulo se compone de una configuración plegable basada en origami, que es fácilmente apilable mediante conexiones simples entre módulos. Con el objetivo de ampliar la funcionalidad de una cadena de módulos de origami apilados, se sugiere el uso de conectores rotacionales que permitan reorientar la cadena modular. Este estudio presenta el diseño y la validación de un conector blando capaz de rotar alrededor de dos ejes, utilizando un eslabón blando accionado por tendones.
Palabras clave:
Detalles del artículo
Citas
Ahmadzadeh, H., Masehian, E., Asadpour, M., 2016. Modular robotic systems: characteristics and applications. Journal of Intelligent & Robotic Systems 81 (3-4), 317–357. DOI: https://doi.org/10.1007/s10846-015-0237-8
Davey, J., Kwok, N., Yim, M., 2012. Emulating self-reconfigurable robotsdesign of the smores system. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 4464–4469. DOI: https://doi.org/10.1109/IROS.2012.6385845
Donald, B. R., Levey, C. G., McGray, C. D., Paprotny, I., Rus, D., 2006. An untethered, electrostatic, globally controllable mems micro-robot. Journal of microelectromechanical systems 15 (1), 1–15. DOI: https://doi.org/10.1109/JMEMS.2005.863697
Drotman, D., Jadhav, S., Karimi, M., de Zonia, P., Tolley, M. T., 2017. 3d printed soft actuators for a legged robot capable of navigating unstructured terrain. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 5532–5538. DOI: https://doi.org/10.1109/ICRA.2017.7989652
Fukuda, T., Nakagawa, S., 1988. Approach to the dynamically reconfigurable robotic system. Journal of Intelligent and Robotic Systems 1 (1), 55–72. DOI: https://doi.org/10.1007/BF00437320
Galloway, K. C., Jois, R., Yim, M., 2010. Factory floor: A robotically reconfigurable construction platform. In: 2010 IEEE International Conference on Robotics and Automation. IEEE, pp. 2467–2472. DOI: https://doi.org/10.1109/ROBOT.2010.5509878
Germann, J., Dommer, M., Pericet-Camara, R., Floreano, D., 2012. Active connection mechanism for soft modular robots. Advanced Robotics 26 (7), 785–798. DOI: https://doi.org/10.1163/156855312X626325
Gu, H., M¨ockli, M., Ehmke, C., Kim, M.,Wieland, M., Moser, S., Bechinger, C., Boehler, Q., Nelson, B. J., 2023. Self-folding soft-robotic chains with reconfigurable shapes and functionalities. Nature Communications 14 (1), 1263. DOI: https://doi.org/10.1038/s41467-023-36819-z
Homberg, B. S., Katzschmann, R. K., Dogar, M. R., Rus, D., 2015. Haptic identification of objects using a modular soft robotic gripper. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 1698–1705. DOI: https://doi.org/10.1109/IROS.2015.7353596
Jiao, Z., Zhang, C., Wang, W., Pan, M., Yang, H., Zou, J., 2019. Advanced artificial muscle for flexible material-based reconfigurable soft robots. Advanced Science 6 (21), 1901371. DOI: https://doi.org/10.1002/advs.201901371
Kurumaya, S., Phillips, B. T., Becker, K. P., Rosen, M. H., Gruber, D. F., Galloway, K. C., Suzumori, K., Wood, R. J., 2018. A modular soft robotic wrist for underwater manipulation. Soft robotics 5 (4), 399–409. DOI: https://doi.org/10.1089/soro.2017.0097
Lee, J.-Y., Cho, K.-J., 2017. Development of magnet connection of modular units for soft robotics. In: 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, pp. 65–67. DOI: https://doi.org/10.1109/URAI.2017.7992886
Mena, L., Gil, D., Monje, C. A., Martínez de la Casa, S., 2022. Diseño de una articulación de dos grados de libertad para robots modulares. In: XLIII Jornadas de Automática. Universidade da Coruña. Servizo de Publicacións, pp. 743–748. DOI: https://doi.org/10.17979/spudc.9788497498418.0743
Mena, L., Monje, C. A., Nagua, L., Mu˜noz, J., Balaguer, C., 2020. Test bench for evaluation of a soft robotic link. Frontiers in Robotics and AI 7, 27. DOI: https://doi.org/10.3389/frobt.2020.00027
Mena, L., Muñoz, J., Monje, C. A., Martínez de la Casa, S., Balaguer, C., 2023. Estudio de una estructura de tipo origami como eslabón blando. In: XLIV Jornadas de Automática. Universidade da Coruña. Servizo de Publicacións, pp. 650–654. DOI: https://doi.org/10.17979/spudc.9788497498609.650
Nagua, L., Relaño, C., Monje, C. A., Balaguer, C., 2021. A new approach of soft joint based on a cable-driven parallel mechanism for robotic applications. Mathematics 9 (13), 1468. DOI: https://doi.org/10.3390/math9131468
Phillips, B. T., Becker, K. P., Kurumaya, S., Galloway, K. C., Whittredge, G., Vogt, D. M., Teeple, C. B., Rosen, M. H., Pieribone, V. A., Gruber, D. F., et al., 2018. A dexterous, glove-based teleoperable low-power soft robotic arm for delicate deep-sea biological exploration. Scientific reports 8 (1), 14779. DOI: https://doi.org/10.1038/s41598-018-33138-y
Qin, Y., Wan, Z., Sun, Y., Skorina, E. H., Luo, M., Onal, C. D., 2018. Design, fabrication and experimental analysis of a 3-d soft robotic snake. In: 2018 IEEE International Conference on Soft Robotics (RoboSoft). IEEE, pp. 77–82. DOI: https://doi.org/10.1109/ROBOSOFT.2018.8404900
Rafsanjani, A., Zhang, Y., Liu, B., Rubinstein, S. M., Bertoldi, K., 2018. Kirigami skins make a simple soft actuator crawl. Science Robotics 3 (15), eaar7555. DOI: https://doi.org/10.1126/scirobotics.aar7555
Robertson, M. A., Paik, J., 2017. New soft robots really suck: Vacuum powered systems empower diverse capabilities. Science Robotics 2 (9), DOI: https://doi.org/10.1126/scirobotics.aan6357
Romanishin, J. W., Gilpin, K., Rus, D., 2013. M-blocks: Momentum-driven, magnetic modular robots. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 4288–4295. DOI: https://doi.org/10.1109/IROS.2013.6696971
Sayed, M. E., Roberts, J. O., McKenzie, R. M., Aracri, S., Buchoux, A., Stokes, A. A., 2021. Limpet ii: A modular, untethered soft robot. Soft Robotics 8 (3), 319–339. DOI: https://doi.org/10.1089/soro.2019.0161
Schmitz, D., 1988. The cmu reconfigurable modular manipulator system. In: Tech, Report The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pa.
Wang, L., Iida, F., 2012. Towards “soft” self-reconfigurable robots. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE, pp. 593–598.
Wolfe, K. C., Moses, M. S., Kutzer, M. D., Chirikjian, G. S., 2012. M 3 express: a low-cost independently-mobile reconfigurable modular robot. In: 2012 IEEE International Conference on Robotics and Automation. IEEE, pp. 2704–2710. DOI: https://doi.org/10.1109/ICRA.2012.6224971
Yim, M., 1993. A reconfigurable modular robot with multiple modes of locomotion. In: Proc. of the 1993 JSME Conference on Advanced Mechatronics, Tokyo, Japan.
Zou, J., Lin, Y., Ji, C., Yang, H., 2018. A reconfigurable omnidirectional soft robot based on caterpillar locomotion. Soft robotics 5 (2), 164–174. DOI: https://doi.org/10.1089/soro.2017.0008