Contenido principal del artículo

Lisbeth Karina Mena López
Universidad Carlos III de Madrid
España
Claudia Sánchez
Universidad Carlos III de Madrid
España
Concepción Monje
Universidad Carlos III de Madrid
España
Santiago Martínez de la Casa
Universidad Carlos III de Madrid
España
Carlos Balaguer
Universidad Carlos III de Madrid
España
Núm. 45 (2024), Robótica
DOI: https://doi.org/10.17979/ja-cea.2024.45.10784
Recibido: may. 28, 2024 Aceptado: jul. 3, 2024 Publicado: jul. 12, 2024
Derechos de autor

Resumen

Los robots modulares pueden adaptarse dinámicamente a diversas tareas o entornos, lo que los hace versátiles, eficientes y económicos. En este trabajo se propone el diseño de un componente de conexión para generar cadenas modulares flexibles, donde tanto el módulo como el conector son estructuras blandas. El módulo se compone de una configuración plegable basada en origami, que es fácilmente apilable mediante conexiones simples entre módulos. Con el objetivo de ampliar la funcionalidad de una cadena de módulos de origami apilados, se sugiere el uso de conectores rotacionales que permitan reorientar la cadena modular. Este estudio presenta el diseño y la validación de un conector blando capaz de rotar alrededor de dos ejes, utilizando un eslabón blando accionado por tendones.

Detalles del artículo

Citas

Ahmadzadeh, H., Masehian, E., Asadpour, M., 2016. Modular robotic systems: characteristics and applications. Journal of Intelligent & Robotic Systems 81 (3-4), 317–357. DOI: https://doi.org/10.1007/s10846-015-0237-8

Davey, J., Kwok, N., Yim, M., 2012. Emulating self-reconfigurable robotsdesign of the smores system. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 4464–4469. DOI: https://doi.org/10.1109/IROS.2012.6385845

Donald, B. R., Levey, C. G., McGray, C. D., Paprotny, I., Rus, D., 2006. An untethered, electrostatic, globally controllable mems micro-robot. Journal of microelectromechanical systems 15 (1), 1–15. DOI: https://doi.org/10.1109/JMEMS.2005.863697

Drotman, D., Jadhav, S., Karimi, M., de Zonia, P., Tolley, M. T., 2017. 3d printed soft actuators for a legged robot capable of navigating unstructured terrain. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 5532–5538. DOI: https://doi.org/10.1109/ICRA.2017.7989652

Fukuda, T., Nakagawa, S., 1988. Approach to the dynamically reconfigurable robotic system. Journal of Intelligent and Robotic Systems 1 (1), 55–72. DOI: https://doi.org/10.1007/BF00437320

Galloway, K. C., Jois, R., Yim, M., 2010. Factory floor: A robotically reconfigurable construction platform. In: 2010 IEEE International Conference on Robotics and Automation. IEEE, pp. 2467–2472. DOI: https://doi.org/10.1109/ROBOT.2010.5509878

Germann, J., Dommer, M., Pericet-Camara, R., Floreano, D., 2012. Active connection mechanism for soft modular robots. Advanced Robotics 26 (7), 785–798. DOI: https://doi.org/10.1163/156855312X626325

Gu, H., M¨ockli, M., Ehmke, C., Kim, M.,Wieland, M., Moser, S., Bechinger, C., Boehler, Q., Nelson, B. J., 2023. Self-folding soft-robotic chains with reconfigurable shapes and functionalities. Nature Communications 14 (1), 1263. DOI: https://doi.org/10.1038/s41467-023-36819-z

Homberg, B. S., Katzschmann, R. K., Dogar, M. R., Rus, D., 2015. Haptic identification of objects using a modular soft robotic gripper. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 1698–1705. DOI: https://doi.org/10.1109/IROS.2015.7353596

Jiao, Z., Zhang, C., Wang, W., Pan, M., Yang, H., Zou, J., 2019. Advanced artificial muscle for flexible material-based reconfigurable soft robots. Advanced Science 6 (21), 1901371. DOI: https://doi.org/10.1002/advs.201901371

Kurumaya, S., Phillips, B. T., Becker, K. P., Rosen, M. H., Gruber, D. F., Galloway, K. C., Suzumori, K., Wood, R. J., 2018. A modular soft robotic wrist for underwater manipulation. Soft robotics 5 (4), 399–409. DOI: https://doi.org/10.1089/soro.2017.0097

Lee, J.-Y., Cho, K.-J., 2017. Development of magnet connection of modular units for soft robotics. In: 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, pp. 65–67. DOI: https://doi.org/10.1109/URAI.2017.7992886

Mena, L., Gil, D., Monje, C. A., Martínez de la Casa, S., 2022. Diseño de una articulación de dos grados de libertad para robots modulares. In: XLIII Jornadas de Automática. Universidade da Coruña. Servizo de Publicacións, pp. 743–748. DOI: https://doi.org/10.17979/spudc.9788497498418.0743

Mena, L., Monje, C. A., Nagua, L., Mu˜noz, J., Balaguer, C., 2020. Test bench for evaluation of a soft robotic link. Frontiers in Robotics and AI 7, 27. DOI: https://doi.org/10.3389/frobt.2020.00027

Mena, L., Muñoz, J., Monje, C. A., Martínez de la Casa, S., Balaguer, C., 2023. Estudio de una estructura de tipo origami como eslabón blando. In: XLIV Jornadas de Automática. Universidade da Coruña. Servizo de Publicacións, pp. 650–654. DOI: https://doi.org/10.17979/spudc.9788497498609.650

Nagua, L., Relaño, C., Monje, C. A., Balaguer, C., 2021. A new approach of soft joint based on a cable-driven parallel mechanism for robotic applications. Mathematics 9 (13), 1468. DOI: https://doi.org/10.3390/math9131468

Phillips, B. T., Becker, K. P., Kurumaya, S., Galloway, K. C., Whittredge, G., Vogt, D. M., Teeple, C. B., Rosen, M. H., Pieribone, V. A., Gruber, D. F., et al., 2018. A dexterous, glove-based teleoperable low-power soft robotic arm for delicate deep-sea biological exploration. Scientific reports 8 (1), 14779. DOI: https://doi.org/10.1038/s41598-018-33138-y

Qin, Y., Wan, Z., Sun, Y., Skorina, E. H., Luo, M., Onal, C. D., 2018. Design, fabrication and experimental analysis of a 3-d soft robotic snake. In: 2018 IEEE International Conference on Soft Robotics (RoboSoft). IEEE, pp. 77–82. DOI: https://doi.org/10.1109/ROBOSOFT.2018.8404900

Rafsanjani, A., Zhang, Y., Liu, B., Rubinstein, S. M., Bertoldi, K., 2018. Kirigami skins make a simple soft actuator crawl. Science Robotics 3 (15), eaar7555. DOI: https://doi.org/10.1126/scirobotics.aar7555

Robertson, M. A., Paik, J., 2017. New soft robots really suck: Vacuum powered systems empower diverse capabilities. Science Robotics 2 (9), DOI: https://doi.org/10.1126/scirobotics.aan6357

Romanishin, J. W., Gilpin, K., Rus, D., 2013. M-blocks: Momentum-driven, magnetic modular robots. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 4288–4295. DOI: https://doi.org/10.1109/IROS.2013.6696971

Sayed, M. E., Roberts, J. O., McKenzie, R. M., Aracri, S., Buchoux, A., Stokes, A. A., 2021. Limpet ii: A modular, untethered soft robot. Soft Robotics 8 (3), 319–339. DOI: https://doi.org/10.1089/soro.2019.0161

Schmitz, D., 1988. The cmu reconfigurable modular manipulator system. In: Tech, Report The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pa.

Wang, L., Iida, F., 2012. Towards “soft” self-reconfigurable robots. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE, pp. 593–598.

Wolfe, K. C., Moses, M. S., Kutzer, M. D., Chirikjian, G. S., 2012. M 3 express: a low-cost independently-mobile reconfigurable modular robot. In: 2012 IEEE International Conference on Robotics and Automation. IEEE, pp. 2704–2710. DOI: https://doi.org/10.1109/ICRA.2012.6224971

Yim, M., 1993. A reconfigurable modular robot with multiple modes of locomotion. In: Proc. of the 1993 JSME Conference on Advanced Mechatronics, Tokyo, Japan.

Zou, J., Lin, Y., Ji, C., Yang, H., 2018. A reconfigurable omnidirectional soft robot based on caterpillar locomotion. Soft robotics 5 (2), 164–174. DOI: https://doi.org/10.1089/soro.2017.0008