Generación de movimientos oceánicos para pruebas sistemáticas con Plataforma Stewart
Contenido principal del artículo
Resumen
En esta investigación se emplea una plataforma Stewart desarrollada por el grupo de investigación con el fin de poder emular condiciones oceánicas para realizar pruebas sistemáticas. Específicamente, se generan los movimientos oceánicos basándose en el espectro de energía de las olas JONSWAP y el modelo armónico simple de la superficie marina derivado del espectro, como superposición de ondas regulares. De esta forma se obtiene una ola irregular. La contribución también incluye la implementación utilizando únicamente los recursos disponibles en un controlador industrial, sin usar software externo. En la fase de resultados, se muestran dos movimientos generados y se comparan con los obtenidos con un sensor MRU y la cinemática directa calculada en el propio controlador industrial. Como trabajo futuro, se plantea expandir la generación a espectros bidimensionales.
Palabras clave:
Detalles del artículo
Citas
Arconada, V. S., García-Barruetabeña, J., Haas, R., 2023. Validation of a ride comfort simulation strategy on an electric Stewart Platform for real road driving applications. Journal of Low Frequency Noise, Vibration and Active Control 42 (1), 368–391. DOI: 10.1177/14613484221122109 DOI: https://doi.org/10.1177/14613484221122109
Cai, Y., Zheng, S., Liu, W., Qu, Z., Zhu, J., Han, J., 2021. Sliding-mode control of ship-mounted Stewart platforms for wave compensation using velocity feedforward. Ocean Engineering 236, 109477. DOI: 10.1016/j.oceaneng.2021.109477 DOI: https://doi.org/10.1016/j.oceaneng.2021.109477
Chakrabarti, S. K., 2005. Ocean Environment. In: Chakrabarti, S. K. (Ed.), Handbook of Offshore Engineering. Elsevier, Illinois, USA, Ch. 3, pp. 79– 131. DOI: https://doi.org/10.1016/B978-008044381-2/50006-0
Chen, W., Du, C., Tong, J., Liu, F., Men, Y., 2024. Dynamics Solution and Characteristics Analysis of a 6-SPS Passive Vibration Isolator Based on MS-DT-TMM. Journal of Vibration Engineering & Technologies 12 (3), 4463–4482. DOI: 10.1007/s42417-023-01131-z DOI: https://doi.org/10.1007/s42417-023-01131-z
Chuan, W., Huafeng, D., Lei, H., 2018. A dynamic ocean wave simulator based on six-degrees of freedom parallel platform. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232 (20), 3722–3732. DOI: 10.1177/0954406217739647 DOI: https://doi.org/10.1177/0954406217739647
Det Norske Veritas, 2011. Modelling and analysis of marine operations. Prácticas Recomendadas DNV-RP-H103, Det Norske Veritas. URL: https://home.hvl.no/ansatte/gste/ftp/MarinLab_files/Litteratur/DNV/rp-h103_2011-04.pdf
Han, B., Chen, N., 2021. Simulation of Ship Trajectory in Waves Based on STAR-CCM+. Bulletin of Science and Practice 7 (4), 267–275. DOI: 10.33619/2414-2948/65/30 DOI: https://doi.org/10.33619/2414-2948/65/30
Hasselmann, K., Barnett, T., Bouws, E., Carlson, H., Cartwright, D., Enke, K., Ewing, J., Gienapp, A., Hasselmann, D., Kruseman, P., Meerburg, A., M¨uller, P., Olbers, D., Richter, K., Sell, W., Walden, H., 1973. Measurements of wind-wave growth and swell decay during the joint North Sea wave project (JONSWAP). Erg¨anzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A Nr. 12.
Longuet-Higgins, M., 1952. On the Statistical Distribution of the Heights of Sea Waves. Journal of Marine Research 11 (3).
Madsen, A. L., Kristensen, SG., 2012. Design of Stewart Platform for Wave Compensation. Aalborg University, Aalborg, Denmark. URL: https://vbn.aau.dk/ws/files/63502229/EMSD415a_Final.pdf
OMRON Corporation, 2019a. NJ/NX-Series Instructions Reference Manual. Kyoto, Japan. URL: https://assets.omron.eu/downloads/manual/en/v4/w502_nx_nj-series_instructions_reference_manual_en.pdf
OMRON Corporation, 2019b. NJ/NX-Series Motion Control Instructions Reference Manual. Kyoto, Japan. URL: https://assets.omron.eu/downloads/manual/en/v2/w508_nx_nj-series_motion_control_instructions_reference_manual_en.pdf
Ship Motion Control, 2024. MRU IMU-008 Roll/Pitch/Heave. URL: https://www.store.shipmotion.eu/smc-imu-008-roll-pitch-heave-surface-mru
Sun, L., Yang, X.-Q., Bu, S.-X., Zheng, W.-T., Ma, Y.-X., Jiao, Z.-L., 2023. Analysis of FPSO Motion Response under Different Wave Spectra. Journal of Marine Science and Engineering 11 (7), 1467. DOI: 10.3390/jmse11071467 DOI: https://doi.org/10.3390/jmse11071467
Tabeshpour, M. R., Belvasi, N., 2023. Ocean waves time-series generation: Minimum required artificial wave time-series for wave energy converter analysis. Journal of Marine Engineering & Technology 22 (6), 273–283. DOI: 10.1080/20464177.2023.2197280 DOI: https://doi.org/10.1080/20464177.2023.2197280
Walica, D., Noskieviˇc, P., 2024. Multibody Simulation Model as Part of Digital Twin Architecture: Stewart Platform Example. IEEE Access 12, 3700–3717. DOI: 10.1109/ACCESS.2023.3349247 DOI: https://doi.org/10.1109/ACCESS.2023.3349247
Wei, M.-Y., 2021. Design and Implementation of Inverse Kinematics and Motion Monitoring System for 6DoF Platform. Applied Sciences 11 (19), 9330. DOI: 10.3390/app11199330 DOI: https://doi.org/10.3390/app11199330
Wei, Y., Wang, A., Han, H., 2019. Ocean wave active compensation analysis of inverse kinematics for hybrid boarding system based on fuzzy algorithm. Ocean Engineering 182, 577–583. DOI: 10.1016/j.oceaneng.2019.03.059 DOI: https://doi.org/10.1016/j.oceaneng.2019.03.059
Xu, Y., Liang, S., Sun, Z., Xue, Q., 2022. A new spectral parameter to predict dominant wave breaking based on the JONSWAP spectrum. Ocean Engineering 243, 110332. DOI: 10.1016/j.oceaneng.2021.110332 DOI: https://doi.org/10.1016/j.oceaneng.2021.110332
Yazid, E., Mirdanie, M., Ardiansyah, R. A., Rahmat, Ristiana, R., Sulaeman, Y., 2021. Inverse Kinematics Model for a Ship Mounted Two-DoF Manipulator System. In: 2021 IEEE Ocean Engineering Technology and Innovation Conference (OETIC). IEEE, Jakarta, Indonesia, pp. 50–56. DOI: 10.1109/OETIC53770.2021.9733723 DOI: https://doi.org/10.1109/OETIC53770.2021.9733723
Zhang, Q., Wang, X.-y., Zhang, Z.-z., Zhou, F.-n., Hu, X., 2022. Wave Heave Compensation Based on An Optimized Backstepping Control Method. China Ocean Engineering 36 (6), 959–968. DOI: 10.1007/s13344-022-0084-x DOI: https://doi.org/10.1007/s13344-022-0084-x