Contenido principal del artículo

José Francisco López Ruiz
Dpto. de Ingeniería de Sistemas y Automática. Universidad de Sevilla
España
Jaime Rico Ranea
Dpto. de Ingeniería de Sistemas y Automática. Universidad de Sevilla
España
Teodoro Álamo Cantarero
Dpto. de Ingeniería de Sistemas y Automática. Universidad de Sevilla
España
https://orcid.org/0000-0002-0623-8146
Manuel Gil Ortega Linares
Dpto. de Ingeniería de Sistemas y Automática. Universidad de Sevilla
España
https://orcid.org/0000-0002-5463-2455
Manuel Vargas Villanueva
Dpto. de Ingeniería de Sistemas y Automática. Universidad de Sevilla
España
https://orcid.org/0000-0002-8504-0575
Núm. 45 (2024), Robótica
DOI: https://doi.org/10.17979/ja-cea.2024.45.10800
Recibido: jun. 5, 2024 Aceptado: jul. 3, 2024 Publicado: jul. 15, 2024
Derechos de autor

Resumen

El trabajo propuesto en este artículo parte de la consideración de un vehículo aéreo autónomo, dotado de múltiples cámaras, como agente capaz de proporcionar mayor versatilidad en aplicaciones de monitorización y seguimiento de múltiples objetivos móviles. Dicho agente tendría la capacidad de orientar sus cámaras de forma completamente independiente y éstas estarían dotadas con capacidad de zoom, lo que permitiría ajustar la distancia focal de cada una de ellas a conveniencia. Partiendo de este concepto y de una estrategia de optimización desarrollada en trabajos anteriores, se propone una generalización de la misma que permita la colaboración de varios agentes en una misma misión. De forma complementaria, parte del trabajo se centra en explorar las posibilidades que ofrece Unreal Engine 5 como herramienta de simulación gráfica para la implementación de la propuesta.

Detalles del artículo

Citas

Ahmed, I., Din, S., Jeon, G., Piccialli, F., Fortino, G., 2021. Towards collaborative robotics in top view surveillance: A framework for multiple object tracking by detection using deep learning. IEEE/CAA Journal of Automatica Sinica 8 (7), 1253–1270. DOI: https://doi.org/10.1109/JAS.2020.1003453

Baek, S., York, G., 2020. Optimal sensor management for multiple target tracking using cooperative unmanned aerial vehicles. In: 2020 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 1294–1300. DOI: https://doi.org/10.1109/ICUAS48674.2020.9213917

Burke, C., McWhirter, P. R., Veitch-Michaelis, J., McAree, O., Pointon, H. A., Wich, S., Longmore, S., 2019. Requirements and limitations of thermal drones for effective search and rescue in marine and coastal areas. Drones 3 (4), 78. DOI: https://doi.org/10.3390/drones3040078

Collins, J., Chand, S., Vanderkop, A., Howard, D., 2021. A review of physics simulators for robotic applications. IEEE Access 9, 51416–51431. DOI: https://doi.org/10.1109/ACCESS.2021.3068769

Epic Games, 2024. The most powerful real-time 3D creation tool: Unreal Engine. https://www.unrealengine.com/en-us, accessed: 2023-10-17.

Jordan, S., Moore, J., Hovet, S., Box, J., Perry, J., Kirsche, K., Lewis, D., Tse, Z. T. H., 2018. State-of-the-art technologies for UAV inspections. IET Radar, Sonar & Navigation 12 (2), 151–164. DOI: https://doi.org/10.1049/iet-rsn.2017.0251

Khan, M. A., Ectors, W., Bellemans, T., Janssens, D., Wets, G., 2017. UAV-based traffic analysis: A universal guiding framework based on literature survey. Transportation Research Procedia 22, 541–550. DOI: https://doi.org/10.1016/j.trpro.2017.03.043

Koenig, N., Howard, A., 2004. Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS)(IEEE Cat. No. 04CH37566). Vol. 3. Ieee, pp. 2149–2154.

Kumar, P., Sonkar, S., Ghosh, A. K., Philip, D., 2020. Real-time vision-based tracking of a moving terrain target from light weight fixed wing UAV using gimbal control. In: 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT). Vol. 1. IEEE, pp. 154–159. DOI: https://doi.org/10.1109/CoDIT49905.2020.9263896

López Ruiz, J. F., Rico, J., Vargas, M., 2024. Enlace a vídeo demostrativo. https://uses0-my.sharepoint.com/:f:/g/personal/mvargas_us_es/EoNpD79xbc9FpxZKeUnZwxMB34Q5rtbs6xgIAoqGl4s8NQ?e=fxHfUb, Accessed: 2024-06-01.

Michel, O., 2004. Cyberbotics ltd. webotsTM: professional mobile robot simulation. International Journal of Advanced Robotic Systems 1 (1), 5. DOI: https://doi.org/10.5772/5618

Robin, C., Lacroix, S., 2016. Multi-robot target detection and tracking: taxonomy and survey. Autonomous Robots 40 (4), 729–760. DOI: https://doi.org/10.1007/s10514-015-9491-7

Salahat, E., Asselineau, C.-A., Coventry, J., Mahony, R., 2019. Waypoint planning for autonomous aerial inspection of large-scale solar farms. In: IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society. Vol. 1. IEEE, pp. 763–769. DOI: https://doi.org/10.1109/IECON.2019.8927123

Senanayake, M., Senthooran, I., Barca, J. C., Chung, H., Kamruzzaman, J., Murshed, M., 2016. Search and tracking algorithms for swarms of robots: A survey. Robotics and Autonomous Systems 75, 422–434. DOI: https://doi.org/10.1016/j.robot.2015.08.010

Shah, S., Dey, D., Lovett, C., Kapoor, A., 2018. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In: Field and Service Robotics: Results of the 11th International Conference. Springer, pp. 621– 635. DOI: https://doi.org/10.1007/978-3-319-67361-5_40

Sharma, R., Pack, D., 2013. Cooperative sensor resource management to aid multi target geolocalization using a team of small fixed-wing unmanned aerial vehicles. In: AIAA Guidance, Navigation, and Control (GNC) Conference. p. 4706. DOI: https://doi.org/10.2514/6.2013-4706

Song, Y., Naji, S., Kaufmann, E., Loquercio, A., Scaramuzza, D., 2021. Flightmare: A flexible quadrotor simulator. In: Conference on Robot Learning. PMLR, pp. 1147–1157.

Sun, J., Li, B., Jiang, Y., Wen, C., 2016. A camera-based target detection and positioning UAV system for search and rescue (SAR) purposes. Sensors 16 (11), 1778. DOI: https://doi.org/10.3390/s16111778

Sun, P., Li, S., Zhu, B., Zuo, Z., Xia, X., 2023. Vision-based fixed-time uncooperative aerial target tracking for UAV. IEEE/CAA Journal of Automatica Sinica 10 (5), 1322–1324. DOI: https://doi.org/10.1109/JAS.2023.123510

The MathWorks, Inc, 2024. Unreal engine simulation for unmanned aerial vehicles - Matlab and Simulink. https://www.mathworks.com/help/uav/ug/3d-simulation-for-unmanned-aerial-vehicles.html, accessed: 2024-03-28.

Vargas, M., Vivas, C., Alamo, T., 2024. Optimal positioning strategy for multi-camera, zooming drones. IEEE/CAA J. Autom. Sinica 11 (8), In press. DOI: https://doi.org/10.1109/JAS.2024.124455

Vargas, M., Vivas, C., Rubio, F. R., Ortega, M. G., 2022. Flying chameleons: A new concept for minimum-deployment, multiple-target tracking drones. Sensors 22 (6), 2359. DOI: https://doi.org/10.3390/s22062359

Zhao, Y., Wang, X., Wang, C., Cong, Y., Shen, L., 2019. Systemic design of distributed multi-UAV cooperative decision-making for multi-target tracking. Autonomous Agents and Multi-Agent Systems 33 (1), 132–158. DOI: 10.1007/s10458-019-09401-5. DOI: https://doi.org/10.1007/s10458-019-09401-5