Contenido principal del artículo

Javier Alejandro Quintana
Universidad de Sevilla
España
Carlos Bordons Alba
Universidad de Sevilla
España
Sergio Esteban Roncero
Universidad de Sevilla
España
Núm. 45 (2024), Control Inteligente
DOI: https://doi.org/10.17979/ja-cea.2024.45.10827
Recibido: may. 31, 2024 Aceptado: jun. 15, 2024 Publicado: jul. 16, 2024
Derechos de autor

Resumen

This paper presents the design, implementation, and experimental validation of the energy management system for a hybrid fuel cell and battery powertrain system for unmanned aerial vehicles (UAVS). The integration of fuel cells and batteries in UAV powertrains combines the high specific energy of fuel cells with the high specific power of batteries, resulting in a more efficient and lightweight energy solution. A novel energy management system (EMS), featuring advanced control algorithms such as fuzzy logic, is proposed to optimize energy distribution and enhance overall performance. The experimental setup includes a test-bench design equipped with a programmable DC/DC converter and a digital twin for real-time monitoring and predictive energy management system. Simulation and experimental results demonstrate significant improvements in energy efficiency, reduced emissions, and enhanced operational reliability. This study underscores the potential of hybrid powertrain systems in advancing the sustainability and efficiency of UAV operations.

Detalles del artículo

Citas

Airbus, 2022. Towards the world’s first hydrogen-powered commercial aircraft. URL: https://www.airbus.com/en/innovation/zero-emission/hydrogen/zeroe

Baroutaji, A., Wilberforce, T., Ramadan, M., Olabi, A. G., 2019. Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors. Renewable and sustainable energy reviews 106, 31–40. DOI: https://doi.org/10.1016/j.rser.2019.02.022

Basner, M., Clark, C., Hansell, A., Hileman, J. I., Janssen, S., Shepherd, K., Sparrow, V., 2017. Aviation noise impacts: state of the science. Noise and Health 19 (87), 41–50.

Brandon, N. P., Kurban, Z., 2017. Clean energy and the hydrogen economy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375 (2098), 20160400. DOI: https://doi.org/10.1098/rsta.2016.0400

de Frutos, V. M., Parra, J. R., Esteban, S., Bordons, C., 2023. Analysis of hybrization for the use of hydrogen for aircraft propulsion in an existing platform. In: AIAA AVIATION 2023 Forum. p. 3876. DOI: https://doi.org/10.2514/6.2023-3876

Gao, L., Jiang, Z., Dougal, R. A., 2005. Evaluation of active hybrid fuel cell/battery power sources. IEEE Transactions on Aerospace and Electronic Systems 41 (1), 346–355. DOI: https://doi.org/10.1109/TAES.2005.1413766

Ham, B., 2021. Creating “digital twins” at scale. URL: https://aeroastro.mit.edu/news-impact/ creating-digital-twins-at-scale/

Herwerth, C., Chiang, C., Ko, A., Matsuyama, S., Choi, S. B., Mirmirani, M., Gamble, D., Paul, R., Sanchez, V., Arena, A., et al., 2007. Development of a small long endurance hybrid pem fuel cell powered uav. SAE Technical Paper. DOI: https://doi.org/10.4271/2007-01-3930 DOI: https://doi.org/10.4271/2007-01-3930

Hydrogen, U., 2024. Fueling carbon-free flight. URL: https://hydrogen.aero/

Lee, D. S., Fahey, D. W., Skowron, A., Allen, M. R., Burkhardt, U., Chen, Q., Doherty, S. J., Freeman, S., Forster, P. M., Fuglestvedt, J., et al., 2021. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric environment 244, 117834. DOI: https://doi.org/10.1016/j.atmosenv.2020.117834

Lee, J., Davari, H., Singh, J., Pandhare, V., 2018. Industrial artificial intelligence for industry 4.0-based manufacturing systems. Manufacturing letters 18, 20–23. DOI: https://doi.org/10.1016/j.mfglet.2018.09.002

Negri, E., Fumagalli, L., Macchi, M., 2017. A review of the roles of digital twin in cps-based production systems. Procedia manufacturing 11, 939– 948. DOI: https://doi.org/10.1016/j.promfg.2017.07.198

of Sciences, N. A., on Engineering, D., Sciences, P., Aeronautics, Board, S. E., on Propulsion, C., to Reduce Commercial Aviation Carbon Emissions, E. S. (Eds.), 2016. Commercial aircraft propulsion and energy systems research: reducing global carbon emissions. National Academies Press.

Rasheed, A., San, O., Kvamsdal, T., 2020. Digital twin: Values, challenges and enablers from a modeling perspective. IEEE access 8, 21980–22012. DOI: https://doi.org/10.1109/ACCESS.2020.2970143

Staffell, I., Scamman, D., Abad, A. V., Balcombe, P., Dodds, P. E., Ekins, P., Shah, N., Ward, K. R., 2019. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science 12 (2), 463–491. DOI: https://doi.org/10.1039/C8EE01157E

Tao, F., Zhang, H., Liu, A., Nee, A. Y., 2018. Digital twin in industry: Stateof-the-art. IEEE Transactions on industrial informatics 15 (4), 2405–2415. DOI: https://doi.org/10.1109/TII.2018.2873186

Yim, S. H., Lee, G. L., Lee, I. H., Allroggen, F., Ashok, A., Caiazzo, F., Eastham, S. D., Malina, R., Barrett, S. R., 2015. Global, regional and local health impacts of civil aviation emissions. Environmental Research Letters 10 (3), 034001. DOI: https://doi.org/10.1088/1748-9326/10/3/034001

Yin, H., Zhou, W., Li, M., Ma, C., Zhao, C., 2016. An adaptive fuzzy logicbased energy management strategy on battery/ultracapacitor hybrid electric vehicles. IEEE Transactions on transportation electrification 2 (3), 300–311. DOI: https://doi.org/10.1109/TTE.2016.2552721

ZeroAvia, 2024. The clean future of flight. URL: https://zeroavia.com/

Zhu, L., Han, J., Peng, D., Wang, T., Tang, T., Charpentier, J.-F., 2014. Fuzzy logic based energy management strategy for a fuel cell/battery/ultracapacitor hybrid ship. In: 2014 first international conference on green DOI: https://doi.org/10.1109/ICGE.2014.6835406

energy ICGE 2014. IEEE, pp. 107–112