Contenido principal del artículo

Seyed Mohammad Hosseindokht
CSIC-UPC
Irán, República islámica de
Joaquim Blesa Izquierdo
Dpto. d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial Universitat Politècnica de Catalunya
España
Vicenç Puig Cayuela
Dpto. d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial Universitat Politècnica de Catalunya
España
Núm. 45 (2024), Ingeniería de Control
DOI: https://doi.org/10.17979/ja-cea.2024.45.10858
Recibido: may. 31, 2024 Aceptado: jul. 1, 2024 Publicado: jul. 16, 2024
Derechos de autor

Resumen

Las redes eléctricas inteligentes y las microrredes representan una evolución significativa respecto a las redes tradicionales, integrando tecnologías avanzadas para optimizar la gestión y distribución de energía. La creciente complejidad de estas redes requiere enfoques de control sofisticados que gestionen múltiples objetivos y restricciones. El control multicapa surge como una solución eficaz, proporcionando una estructura jerárquica que mejora la eficiencia operativa y la capacidad de integrar fuentes de energía renovable y tecnologías de almacenamiento. En este trabajo se propone una estrategia de control de redes eléctricas inteligentes que contempla dos capas de control: nivel de microrred y nivel de componentes. Para el control a nivel de microrred se considera un control económico predictivo que proporciona las potencias de trabajo de los diferentes componentes y que mediante un control local se consiguen alcanzar. Se utiliza un caso de estudio basado en una microrred real de laboratorio para mostrar la eficiencia del método propuesto.

Detalles del artículo

Citas

Abhishek, A., Ranjan, A., Devassy, S., Kumar Verma, B., Ram, S.K. and Dhakar, A.K. (2020), Review of hierarchical control strategies for DC microgrid. IET Renewable Power Generation, 14: 1631-1640. DOI: 10.1049/iet-rpg.2019.1136 DOI: https://doi.org/10.1049/iet-rpg.2019.1136

Bordons, C., Garcia-Torres, F., Ridao, M.A. Model Predictive Control of Microgrids. Springer Cham, 2020. DOI: https://doi.org/10.1007/978-3-030-24570-2

Freire, V. A., De Arruda, L. V. R., Bordons, C., & Márquez, J. J. (2020). Optimal demand response management of a residential microgrid using model predictive control. IEEE Access, 8, 228264-228276. DOI: 10.1109/ACCESS.2020.3045459 DOI: https://doi.org/10.1109/ACCESS.2020.3045459

Hooshmand, A., Malki, H. A., & Mohammadpour, J. (2012). Power flow management of microgrid networks using model predictive control. Computers & Mathematics with Applications, 64(5), 869-876. DOI: 10.1016/j.camwa.2012.01.028 DOI: https://doi.org/10.1016/j.camwa.2012.01.028

Hu, J., Shan, Y., Cheng, K. W., & Islam, S. (2022). Overview of power converter control in microgrids—challenges, advances, and future trends. IEEE Transactions on Power Electronics, 37(8), 9907-9922. DOI: 10.1109/TPEL.2022.3159828 DOI: https://doi.org/10.1109/TPEL.2022.3159828

Hu, J. et al., "Economic Model Predictive Control for Microgrid Optimization: A Review," in IEEE Transactions on Smart Grid, vol. 15, no. 1, pp. 472-484, Jan. 2024, DOI: 10.1109/TSG.2023.3266253 DOI: https://doi.org/10.1109/TSG.2023.3266253

Lofberg, J. (2004). A toolbox for modeling and optimization in MATLAB. Computer Aided Control Systems Design 2004 IEEE Int. Symp., New Orleans, LA, USA, 2004, pp. 284–289 DOI:10.1109/CACSD.2004.1393890 DOI: https://doi.org/10.1109/CACSD.2004.1393890

Mohammed, A., Refaat, S. S., Bayhan, S., & Abu-Rub, H. (2019). AC microgrid control and management strategies: Evaluation and review. IEEE Power Electronics Magazine, 6(2), 18-31. DOI: 10.1109/MPEL.2019.2910292 DOI: https://doi.org/10.1109/MPEL.2019.2910292

Nassourou, M., Blesa, J., & Puig, V. (2020a). Optimal energy dispatch in a smart micro-grid system using economic model predictive control. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 234(1), 96-106. DOI: 10.1177/0959651818786376 DOI: https://doi.org/10.1177/0959651818786376

Nassourou, M., Blesa, J., & Puig, V. (2020b). Robust economic model predictive control based on a zonotope and local feedback controller for energy dispatch in smart-grids considering demand uncertainty. Energies, 13(3), 696. DOI: 10.3390/en13030696 DOI: https://doi.org/10.3390/en13030696

Norambuena, M., et al. "Hierarchical Control Based on MPC for a Smart-Grid Including Power Distribution," IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society, Singapore, Singapore, 2023, pp. 1-7, DOI: 10.1109/IECON51785.2023.10311680 DOI: https://doi.org/10.1109/IECON51785.2023.10311680

Parisio, A., Rikos, E., & Glielmo, L. (2014). A model predictive control approach to microgrid operation optimization. IEEE Transactions on Control Systems Technology, 22(5), 1813-1827. DOI: 10.1109/TCST.2013.2295737 DOI: https://doi.org/10.1109/TCST.2013.2295737

Qi, W., Liu, J., Chen, X., & Christofides, P. D. (2010). Supervisory predictive control of standalone wind/solar energy generation systems. IEEE transactions on control systems technology, 19(1), 199-207. DOI: 10.1109/TCST.2010.2041930 DOI: https://doi.org/10.1109/TCST.2010.2041930

Zhou, L., and Preindl, M. "Hierarchical Software-Defined Control Architecture With MPC-Based Power Module to Interface Renewable Sources and Motor Drives," in IEEE Transactions on Sustainable Energy, vol. 14, no. 1, pp. 83-96, Jan. 2023, DOI: 10.1109/TSTE.2022.3202957 DOI: https://doi.org/10.1109/TSTE.2022.3202957