Web-based Interface to control autonomous robotic systems in hospital scenarios
Contenido principal del artículo
Resumen
We developed a graphical interface for an autonomous support robot to assist health personnel with the care of infectious patients, such as those with COVID-19. Using the React Framework, the interface design is in the experimental phase, tested on a real robot. Its main goal is to enable remote motor control and Lidar data visualization, compatible with any Robot Operating System (ROS) setup via ROSbridge, which uses websockets to expose ROS communication channels. The system leverages roslibjs, React, and React Three Fiber, utilizing WebGL and Three.js for smooth web integration. The user interface includes interactive elements for camera feeds, motor control, and Lidar data visualization. This enhances ROS capabilities beyond local networks, fostering new remote robotics applications. The control module is part of a comprehensive system for managing tasks related to patient care.
Palabras clave:
Detalles del artículo
Citas
Arce, D., Balbuena, J., Menacho, D., Caballero, L., Cisneros, E., Huanca, D., Alvites, M., Beltran, C., Cuellar, F., 2022. Design and implementation of telemarketing robot with emotion identification for human-robot interaction. In: 2022 Sixth IEEE International Conference on Robotic Computing (IRC). pp. 177–180. DOI: https://doi.org/10.1109/IRC55401.2022.00037
Ivanov, A., Zakiev, A., Tsoy, T., Hsia, K.-H., 2021. Online monitoring and visualization with ros and reactjs. In: 2021 International Siberian Conference on Control and Communications (SIBCON). pp. 1–4. DOI: 10.1109/SIBCON50419.2021.9438890 DOI: https://doi.org/10.1109/SIBCON50419.2021.9438890
Jensen, K., Larsen, M., Nielsen, S. H., Larsen, L. B., Olsen, K. S., Jørgensen, R. N., 2014. Towards an open software platform for field robots in precision agriculture. Robotics 3 (2), 207–234. URL: https://www.mdpi.com/2218-6581/3/2/207 DOI: 10.3390/robotics3020207 DOI: https://doi.org/10.3390/robotics3020207
Nukala, S., Sugaya, M., Nagarajan, S., 2023. Web based lidar point cloud visualization and teleoperation tool for robots. In: 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT). pp. 1–6. DOI: 10.1109/ICCCNT56998.2023.10307953 DOI: https://doi.org/10.1109/ICCCNT56998.2023.10307953
Szafr, D., Szafr, D. A., 2021. Connecting human-robot interaction and data visualization. In: 2021 16th ACM/IEEE International Conference on Human-Robot Interaction (HRI). pp. 281–292. DOI: https://doi.org/10.1145/3434073.3444683
Sousa, R. B., Rocha, C. D., Martins, J. G., Pedro Costa, J., Padrao, J. T.,Sarmento, J. M., Carvalho, J. P., Lopes, M. S., Costa, P. G., Moreira, A. P., 2024. A robotic framework for the robot@factory 4.0 competition. In: 2024 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). pp. 66–73. DOI: 10.1109/ICARSC61747.2024.10535935 DOI: https://doi.org/10.1109/ICARSC61747.2024.10535935
Varela-Aldás, J., Recalde, L. F., Guevara, B. S., Andaluz, V. H., Gandolfo,D. C., 2024. Open-access platform for the simulation of aerial robotic manipulators. IEEE Access 12, 49735–49751. DOI: 10.1109/ACCESS.2024.3384986 DOI: https://doi.org/10.1109/ACCESS.2024.3384986
Velamala, S. S., Patil, D., Ming, X., 2017. Development of ros-based gui for control of an autonomous surface vehicle. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). pp. 628–633. DOI: 10.1109/ROBIO.2017.8324487 DOI: https://doi.org/10.1109/ROBIO.2017.8324487
Wang, H., Li, X., Zhang, X., 2021. Multimodal human-robot interaction on service robot. In: 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Vol. 5. pp. 2290–2295. DOI: 10.1109/IAEAC50856.2021.9391068 DOI: https://doi.org/10.1109/IAEAC50856.2021.9391068