Contenido principal del artículo

Juan David Romero-Ante
Universidad Miguel Hernández de Elche
España
https://orcid.org/0000-0002-0893-4647
Jose Maria Vicente-Samper
Universidad de Alicante
España
https://orcid.org/0000-0001-7902-1979
Juliana Manrique-Cordoba
Universidad Miguel Hernández de Elche
España
https://orcid.org/0000-0002-0684-8534
Vicente Esteve-Sala
Universidad de Alicante
España
https://orcid.org/0000-0003-4999-4619
Miguel Angel de la Casa Lillo
Universidad Miguel Hernández de Elche
España
https://orcid.org/0000-0002-7017-2225
Jose Maria Sabater Navarro
Universidad Miguel Hernández de Elche
España
https://orcid.org/0000-0002-3890-6225
Núm. 45 (2024), Bioingeniería
DOI: https://doi.org/10.17979/ja-cea.2024.45.10884
Recibido: jun. 4, 2024 Aceptado: jul. 8, 2024 Publicado: jul. 12, 2024
Derechos de autor

Resumen

La neuropatía periférica (NP) es una afección causada por el daño a los nervios periféricos, responsables del movimiento de los brazos y piernas. La NP puede afectar los nervios autónomos, alterando la función sudomotora y generando piel seca y agrietada. Este artículo explora el uso de las propiedades eléctricas de la piel para medir la actividad electrodérmica (EDA) y su utilidad en la evaluación del grado de afectación de la NP. Se ofrece una visión general de la NP y las características de la señal de EDA, así como algunos modelos eléctricos utilizados para su medición. Además, se revisan estudios que relacionan la EDA con el nivel de afectación del paciente. Finalmente, se presenta el diseño de un circuito electrónico para medir la EDA, con el objetivo de desarrollar un sistema portátil capaz de monitorizar en tiempo real la conductancia eléctrica de la piel de la planta del pie, facilitando el seguimiento a nivel ambulatorio de los pacientes.

Detalles del artículo

Citas

AnalogDevices, 2022. Ad8552. Available online: https://www.analog.com/en/products/ad8552.html (accesed on May 30, 2024).

Baker, L. B., 2019. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature 6 (3), 211–259. DOI: https://doi.org/10.1080/23328940.2019.1632145

Bolaños, L. D., Vicente-Samper, J. M., Vinaroz, D. Z., Vivas, O. A., Sala, V. E., Sabater-Navarro, J. M., 2019. Low-cost eda device for scree- ning diabetic neuropathy. In: 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS). IEEE, pp. 253–258. DOI: https://doi.org/10.1109/CBMS.2019.00061

Boucsein, W., 08 2013. Electrodermal activity: Second edition. DOI: 10.1007/978-1-4614-1126-0 DOI: https://doi.org/10.1007/978-1-4614-1126-0

Boucsein, W., Baltissen, R., Euler, M., 1984. Dependence of skin conductance reactions and skin resistance reactions upon previous level. Psychophysio- logy 21 (2), 212–218. DOI: https://doi.org/10.1111/j.1469-8986.1984.tb00207.x

Boucsein, W., Fowles, D. C., Grimnes, S., Ben-Shakhar, G., Roth, W. T., Daw- son, M. E., Filion, D. L., 2012. Publication recommendations for electro- dermal measurements. Psychophysiology 49 (8), 1017–1034. DOI: https://doi.org/10.1111/j.1469-8986.2012.01384.x

Boyko, E. J., Ahroni, J. H., Stensel, V., Forsberg, R. C., Davignon, D. R., Smith, D. G., 1999. A prospective study of risk factors for diabetic foot ulcer. the seattle diabetic foot study. Diabetes care 22 (7), 1036–1042. DOI: https://doi.org/10.2337/diacare.22.7.1036

deSantosSierra,A., Ávila,C.S., Casanova,J.G., DelPozo,G.B., 2011. Real-time stress detection by means of physiological signals. Recent ap- plication in biometrics 58, 4857–65. DOI: https://doi.org/10.5772/18246

Deanfield, J., Daggett, P., Harrison, M., 1980. The role of autonomic neu- ropathy in diabetic foot ulceration. Journal of the Neurological Sciences 47 (2), 203–210. DOI: https://doi.org/10.1016/0022-510X(80)90004-0

Farina, P. R., Turiel, J. P., González, L., Sarmiento, E. G., Herreros, A., Higuero, S., 2009. Neural network application to the development of a novel diabetic neuropathy diagnosis tool using the valsalva index and the scr. In: 2009 9th International Conference on Information Technology and Applications in Biomedicine. IEEE, pp. 1–4. DOI: https://doi.org/10.1109/ITAB.2009.5394431

FEDOP, 2019. La diabetes, primera causa de amputación en España. Available online: https://fedop.org/noticias/la-diabetes-primera-causa-de-amputacion-en-espana (accesed on May 30, 2024).

Hanewinckel, R., Ikram, M., Van Doorn, P., 2016. Peripheral neuropathies. Handbook of clinical neurology 138, 263–282. DOI: https://doi.org/10.1016/B978-0-12-802973-2.00015-X

Khalfallah, K., Ayoub, H., Calvet, J. H., Neveu, X., Brunswick, P., Griveau, S., Lair, V., Cassir, M., Bedioui, F., 2010. Noninvasive galvanic skin sensor for early diagnosis of sudomotor dysfunction: application to diabetes. IEEE Sensors Journal 12 (3), 456–463. DOI: https://doi.org/10.1109/JSEN.2010.2103308

Najstrom, M., Jansson, B., 2007. Skin conductance responses as predictor of emotional responses to stressful life events. Behaviour research and therapy 45 (10), 2456–2463. DOI: https://doi.org/10.1016/j.brat.2007.03.001

NIDDK, 2018. Peripheral neuropathy. Available online: https://www.niddk.nih.gov/health-information/informacion-de-la-salud/diabetes/informacion-general/prevenir-problemas/neuropatias-diabeticas/periferica (accesed on May 30, 2024).

Pabst, O., Tronstad, C., Grimnes, S., Fowles, D., Martinsen, Ø. G., 2017. Comparison between the ac and dc measurement of electrodermal activity. Psychophysiology 54 (3), 374–385. DOI: https://doi.org/10.1111/psyp.12803

Ponirakis, G., Petropoulos, I., Fadavi, H. a., Alam, U., Asghar, O., Marshall, A., Tavakoli, M., Malik, R., 2014. The diagnostic accuracy of neuropad® for assessing large and small fibre diabetic neuropathy. Diabetic medicine 31 (12), 1673–1680. DOI: https://doi.org/10.1111/dme.12536

Posada-Quintero, H. F., Chon, K. H., 2020. Innovations in electrodermal activity data collection and signal processing: A systematic review. Sensors 20 (2), 479. DOI: https://doi.org/10.3390/s20020479

Rico-Olarte, C., López, D. M., Kepplinger, S., 2018. Towards a conceptual framework for the objective evaluation of user experience. In: Design, User Experience, and Usability: Theory and Practice: 7th International Confe- rence, DUXU 2018, Held as Part of HCI International 2018, Las Vegas, NV, USA, July 15-20, 2018, Proceedings, Part I 7. Springer, pp. 546–559. DOI: https://doi.org/10.1007/978-3-319-91797-9_39

Selvarajah, D., Cash, T., Davies, J., Sankar, A., Rao, G., Grieg, M., Pallai, S., Gandhi, R., Wilkinson, I. D., Tesfaye, S., 2015. Sudoscan: a simple, rapid, and objective method with potential for screening for diabetic peripheral neuropathy. PloS one 10 (10), e0138224. DOI: https://doi.org/10.1371/journal.pone.0138224

SHC, 2019. Thermoregulatory sweat test. Available online:https: //stanfordhealthcare.org/medical-tests/t/tst.html (accesed on May 30, 2024).

Van Dooren, M., Janssen, J. H., et al., 2012. Emotional sweating across the body: Comparing 16 different skin conductance measurement locations. Physiology & behavior 106 (2), 298–304. DOI: https://doi.org/10.1016/j.physbeh.2012.01.020

Vinik, A. I., Maser, R. E., Mitchell, B. D., Freeman, R., 2003. Diabetic auto- nomic neuropathy. Diabetes care 26 (5), 1553–1579. DOI: https://doi.org/10.2337/diacare.26.5.1553

Wang, H.-X., Jia, Z.-R., Shi, X., Liang, W., Sun, X.-R., Huang, Y.-N., 2008. Significance of sympathetic skin response in diagnosis diabetic small fiber neuropathy. Zhonghua yi xue za zhi 88 (25), 1753–1755.