Contenido principal del artículo

César Antonio Ortiz Toro
Universidad Polit´ecnica de Madrid
España
https://orcid.org/0000-0002-7245-6328
Cristina Cerrada Collado
Universidad Nacional de Educación a Distancia
España
https://orcid.org/0009-0003-4452-405X
David Moreno Salinas
UNED
España
https://orcid.org/0000-0002-0264-3419
Dictino Chaos García
Universidad Nacional de Educación a Distancia
España
https://orcid.org/0000-0003-0132-785X
Karen Lyn García Suárez
Universidad de Las Palmas de Gran Canaria
España
https://orcid.org/0000-0002-7251-5930
Pablo Otero Roth
Universidad de Málaga
España
https://orcid.org/0000-0003-3042-4392
Juan Manuel Vidal Pérez
Universidad de Cádiz
España
https://orcid.org/0000-0002-1828-3876
Miguel Ángel Luque Nieto
Universidad de Málaga
España
https://orcid.org/0000-0002-9287-2329
Ana Isabel Vázquez
Universidad de Cádiz
España
https://orcid.org/0000-0001-9722-709X
José Jesús Fraile Ardanuy
Universidad Politécnica de Madrid
España
https://orcid.org/0000-0002-0192-4817
Vicente Negro Valdecantos
Universidad Politécnica de Madrid
España
https://orcid.org/0000-0002-5110-0891
Eugenio Jiménez Yguacel
Universidad de Las Palmas de Gran Canaria
España
https://orcid.org/0000-0002-8447-9842
Joaquín Aranda Almansa
Universidad Nacional de Educación a Distancia
España
https://orcid.org/0000-0001-5496-927X
Santiago Zazo Bello
Universidad Politécnica de Madrid
España
https://orcid.org/0000-0001-9073-7927
Pedro José Zufiria Zatarain
Universidad Politécnica de Madrid
España
https://orcid.org/0000-0002-1217-1216
Luis Magdalena Layos
Universidad Politécnica de Madrid
España
https://orcid.org/0000-0001-7639-8906
Juan Parras Moral
Universidad Polit´ecnica de Madrid
España
https://orcid.org/0000-0002-7028-3179
Alvaro Gutiérrez Martín
Universidad Polit´ecnica de Madrid
España
https://orcid.org/0000-0001-8926-5328
Núm. 45 (2024), Automática Marítima
DOI: https://doi.org/10.17979/ja-cea.2024.45.10895
Recibido: jun. 5, 2024 Aceptado: jun. 14, 2024 Publicado: jul. 12, 2024
Derechos de autor

Resumen

Este artículo presenta NauSim, un simulador de código abierto para drones submarinos, centrado en el desarrollo de software de control y en su fácil despliegue en el ''hardware'' objetivo. NauSim proporciona a investigadores, desarrolladores y estudiantes un campo de pruebas virtual, realista y versátil, que les permite evaluar el rendimiento de drones submarinos en diversos escenarios. Entre sus principales características figuran escenarios personalizables, un diseño modular para controladores, sensores y actuadores, y soporte para simulaciones de varios drones, lo que permite realizar estudios de robótica colaborativa y de enjambre.

Detalles del artículo

Citas

Amer, A., Álvarez-Tuñón, O., Ugurlu, H. I., Sejersen, J. L. F., Brodskiy, Y., Kayacan, E., 2023. Unav-sim: A visually realistic underwater robotics simulator and synthetic data-generation framework. In: 2023 21st International Conference on Advanced Robotics (ICAR). IEEE, pp. 570–576. DOI: 10.48550/arXiv.2310.11927 DOI: https://doi.org/10.1109/ICAR58858.2023.10406819

Betancourt, J., Coral, W., Colorado, J., 2020. An integrated rov solution for underwater net-cage inspection in fish farms using computer vision. SN Applied Sciences 2 (12), 1946. DOI: 10.1007/s42452-020-03623-z DOI: https://doi.org/10.1007/s42452-020-03623-z

Cerqueira, R., Trocoli, T., Neves, G., Joyeux, S., Albiez, J., Oliveira, L., 2017. A novel gpu-based sonar simulator for real-time applications. Computers & Graphics 68, 66–76. DOI: 10.1016/j.cag.2017.08.008 DOI: https://doi.org/10.1016/j.cag.2017.08.008

Cheng, L., Tan, X., Yao, D., Xu, W., Wu, H., Chen, Y., 2021. A fishery water quality monitoring and prediction evaluation system for floating uav based on time series. Sensors 21 (13), 4451. DOI: 10.3390/s21134451 DOI: https://doi.org/10.3390/s21134451

Coumans, E., 2015. Bullet physics simulation. In: ACM SIGGRAPH 2015 Courses. p. 1. DOI: 10.1145/2776880.2792704 DOI: https://doi.org/10.1145/2776880.2792704

de Cerqueira Gava, P. D., Nascimento Júnior, C. L., Belchior de Franc¸a Silva, J. R., Adabo, G. J., 2022. Simu2vita: A general purpose underwater vehicle simulator. Sensors 22 (9), 3255. DOI: 10.3390/s22093255 DOI: https://doi.org/10.3390/s22093255

Fossen, T. I., 2011. Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons. DOI: 10.1002/9781119994138 DOI: https://doi.org/10.1002/9781119994138

Goslin, M., Mine, M. R., 2004. The panda3d graphics engine. Computer (10), 112–114. DOI: 10.1109/MC.2004.180 DOI: https://doi.org/10.1109/MC.2004.180

Hu, S., Feng, A., Shi, J., Li, J., Khan, F., Zhu, H., Chen, J., Chen, G., 2022. Underwater gas leak detection using an autonomous underwater vehicle (robotic fish). Process Safety and Environmental Protection 167, 89–96. DOI: 10.1016/j.psep.2022.09.002 DOI: https://doi.org/10.1016/j.psep.2022.09.002

Liniger, J., Jensen, A. L., Pedersen, S., Sørensen, H., Mai, C., 2022. On the autonomous inspection and classification of marine growth on subsea structures. In: OCEANS 2022-Chennai. IEEE, pp. 1–7. DOI: 10.1109/OCEANSChennai45887.2022.9775295 DOI: https://doi.org/10.1109/OCEANSChennai45887.2022.9775295

Loncar, I., Obradovic, J., Krasevac, N., Mandic, L., Kvasic, I., Ferreira, F., Slosic, V., Nad, D., Miskovic, N., 2022. Marus-a marine robotics simulator. In: OCEANS 2022, Hampton Roads. IEEE, pp. 1–7. DOI: https://doi.org/10.1109/OCEANS47191.2022.9976969

Madeo, D., Pozzebon, A., Mocenni, C., Bertoni, D., 2020. A low-cost unmanned surface vehicle for pervasive water quality monitoring. IEEE Transactions on Instrumentation and Measurement 69 (4), 1433–1444. DOI: 10.1109/TIM.2019.2963515 DOI: https://doi.org/10.1109/TIM.2019.2963515

Manhaes, M. M. M., Scherer, S. A., Voss, M., Douat, L. R., Rauschenbach, T., 2016. Uuv simulator: A gazebo-based package for underwater intervention and multi-robot simulation. In: OCEANS 2016 MTS/IEEE Monterey. Ieee, pp. 1–8. DOI: 10.1109/OCEANS.2016.7761080 DOI: https://doi.org/10.1109/OCEANS.2016.7761080

Potokar, E., Ashford, S., Kaess, M., Mangelson, J. G., 2022. Holoocean: An underwater robotics simulator. In: 2022 International Conference on Robotics and Automation (ICRA). IEEE, pp. 3040–3046. DOI: 10.1109/ICRA46639.2022.9812353 DOI: https://doi.org/10.1109/ICRA46639.2022.9812353

Prats, M., Perez, J., Fern´andez, J. J., Sanz, P. J., 2012. An open source tool for simulation and supervision of underwater intervention missions. In: IEEE/RSJ international conference on Intelligent Robots and Systems. IEEE, pp. 2577–2582. DOI: 10.1109/IROS.2012.6385788 DOI: https://doi.org/10.1109/IROS.2012.6385788

Raschka, S., Patterson, J., Nolet, C., 2020. Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence. Information 11 (4), 193. DOI: 10.3390/info11040193 DOI: https://doi.org/10.3390/info11040193

Robotics, B., 2016. Bluerov2: The world’s most affordable high-performance rov. BlueROV2 Datasheet; Blue Robotics: Torrance, CA, USA.

Rofallski, R., Tholen, C., Helmholz, P., Parnum, I., Luhmann, T., 2020. Measuring artificial reefs using a multi-camera system for unmanned underwater vehicles. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 43 (B2), 999–1008. DOI: 10.5194/isprs-archives-XLIII-B2-2020-999-2020 DOI: https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-999-2020

Smith, R., et al., 2005. Open dynamics engine.

Sultonov, S., 2023. Importance of python programming language in machine learning. International Bulletin of Engineering and Technology 3 (9), –30.

von Benzon, M., Sørensen, F. F., Uth, E., Jouffroy, J., Liniger, J., Pedersen, S., 2022. An open-source benchmark simulator: Control of a bluerov2 underwater robot. Journal of Marine Science and Engineering 10 (12), 1898. DOI: 10.3390/jmse10121898 DOI: https://doi.org/10.3390/jmse10121898

Wu, C.-J., 2018. 6-dof modelling and control of a remotely operated vehicle. Ph.D. thesis.