NauSim

Un simulador de código abierto para el control, desarrollo y despliegue de drones submarinos

Autores/as

DOI:

https://doi.org/10.17979/ja-cea.2024.45.10895

Palabras clave:

Simulación, AUVs, Sistemas multivehículo, Sensores/actuadores, Navegación, Programación y visión

Resumen

Este artículo presenta NauSim, un simulador de código abierto para drones submarinos, centrado en el desarrollo de software de control y en su fácil despliegue en el ''hardware'' objetivo. NauSim proporciona a investigadores, desarrolladores y estudiantes un campo de pruebas virtual, realista y versátil, que les permite evaluar el rendimiento de drones submarinos en diversos escenarios. Entre sus principales características figuran escenarios personalizables, un diseño modular para controladores, sensores y actuadores, y soporte para simulaciones de varios drones, lo que permite realizar estudios de robótica colaborativa y de enjambre.

Citas

Amer, A., Álvarez-Tuñón, O., Ugurlu, H. I., Sejersen, J. L. F., Brodskiy, Y., Kayacan, E., 2023. Unav-sim: A visually realistic underwater robotics simulator and synthetic data-generation framework. In: 2023 21st International Conference on Advanced Robotics (ICAR). IEEE, pp. 570–576. DOI: 10.48550/arXiv.2310.11927 DOI: https://doi.org/10.1109/ICAR58858.2023.10406819

Betancourt, J., Coral, W., Colorado, J., 2020. An integrated rov solution for underwater net-cage inspection in fish farms using computer vision. SN Applied Sciences 2 (12), 1946. DOI: 10.1007/s42452-020-03623-z DOI: https://doi.org/10.1007/s42452-020-03623-z

Cerqueira, R., Trocoli, T., Neves, G., Joyeux, S., Albiez, J., Oliveira, L., 2017. A novel gpu-based sonar simulator for real-time applications. Computers & Graphics 68, 66–76. DOI: 10.1016/j.cag.2017.08.008 DOI: https://doi.org/10.1016/j.cag.2017.08.008

Cheng, L., Tan, X., Yao, D., Xu, W., Wu, H., Chen, Y., 2021. A fishery water quality monitoring and prediction evaluation system for floating uav based on time series. Sensors 21 (13), 4451. DOI: 10.3390/s21134451 DOI: https://doi.org/10.3390/s21134451

Coumans, E., 2015. Bullet physics simulation. In: ACM SIGGRAPH 2015 Courses. p. 1. DOI: 10.1145/2776880.2792704 DOI: https://doi.org/10.1145/2776880.2792704

de Cerqueira Gava, P. D., Nascimento Júnior, C. L., Belchior de Franc¸a Silva, J. R., Adabo, G. J., 2022. Simu2vita: A general purpose underwater vehicle simulator. Sensors 22 (9), 3255. DOI: 10.3390/s22093255 DOI: https://doi.org/10.3390/s22093255

Fossen, T. I., 2011. Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons. DOI: 10.1002/9781119994138 DOI: https://doi.org/10.1002/9781119994138

Goslin, M., Mine, M. R., 2004. The panda3d graphics engine. Computer (10), 112–114. DOI: 10.1109/MC.2004.180 DOI: https://doi.org/10.1109/MC.2004.180

Hu, S., Feng, A., Shi, J., Li, J., Khan, F., Zhu, H., Chen, J., Chen, G., 2022. Underwater gas leak detection using an autonomous underwater vehicle (robotic fish). Process Safety and Environmental Protection 167, 89–96. DOI: 10.1016/j.psep.2022.09.002 DOI: https://doi.org/10.1016/j.psep.2022.09.002

Liniger, J., Jensen, A. L., Pedersen, S., Sørensen, H., Mai, C., 2022. On the autonomous inspection and classification of marine growth on subsea structures. In: OCEANS 2022-Chennai. IEEE, pp. 1–7. DOI: 10.1109/OCEANSChennai45887.2022.9775295 DOI: https://doi.org/10.1109/OCEANSChennai45887.2022.9775295

Loncar, I., Obradovic, J., Krasevac, N., Mandic, L., Kvasic, I., Ferreira, F., Slosic, V., Nad, D., Miskovic, N., 2022. Marus-a marine robotics simulator. In: OCEANS 2022, Hampton Roads. IEEE, pp. 1–7. DOI: https://doi.org/10.1109/OCEANS47191.2022.9976969

Madeo, D., Pozzebon, A., Mocenni, C., Bertoni, D., 2020. A low-cost unmanned surface vehicle for pervasive water quality monitoring. IEEE Transactions on Instrumentation and Measurement 69 (4), 1433–1444. DOI: 10.1109/TIM.2019.2963515 DOI: https://doi.org/10.1109/TIM.2019.2963515

Manhaes, M. M. M., Scherer, S. A., Voss, M., Douat, L. R., Rauschenbach, T., 2016. Uuv simulator: A gazebo-based package for underwater intervention and multi-robot simulation. In: OCEANS 2016 MTS/IEEE Monterey. Ieee, pp. 1–8. DOI: 10.1109/OCEANS.2016.7761080 DOI: https://doi.org/10.1109/OCEANS.2016.7761080

Potokar, E., Ashford, S., Kaess, M., Mangelson, J. G., 2022. Holoocean: An underwater robotics simulator. In: 2022 International Conference on Robotics and Automation (ICRA). IEEE, pp. 3040–3046. DOI: 10.1109/ICRA46639.2022.9812353 DOI: https://doi.org/10.1109/ICRA46639.2022.9812353

Prats, M., Perez, J., Fern´andez, J. J., Sanz, P. J., 2012. An open source tool for simulation and supervision of underwater intervention missions. In: IEEE/RSJ international conference on Intelligent Robots and Systems. IEEE, pp. 2577–2582. DOI: 10.1109/IROS.2012.6385788 DOI: https://doi.org/10.1109/IROS.2012.6385788

Raschka, S., Patterson, J., Nolet, C., 2020. Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence. Information 11 (4), 193. DOI: 10.3390/info11040193 DOI: https://doi.org/10.3390/info11040193

Robotics, B., 2016. Bluerov2: The world’s most affordable high-performance rov. BlueROV2 Datasheet; Blue Robotics: Torrance, CA, USA.

Rofallski, R., Tholen, C., Helmholz, P., Parnum, I., Luhmann, T., 2020. Measuring artificial reefs using a multi-camera system for unmanned underwater vehicles. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 43 (B2), 999–1008. DOI: 10.5194/isprs-archives-XLIII-B2-2020-999-2020 DOI: https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-999-2020

Smith, R., et al., 2005. Open dynamics engine.

Sultonov, S., 2023. Importance of python programming language in machine learning. International Bulletin of Engineering and Technology 3 (9), –30.

von Benzon, M., Sørensen, F. F., Uth, E., Jouffroy, J., Liniger, J., Pedersen, S., 2022. An open-source benchmark simulator: Control of a bluerov2 underwater robot. Journal of Marine Science and Engineering 10 (12), 1898. DOI: 10.3390/jmse10121898 DOI: https://doi.org/10.3390/jmse10121898

Wu, C.-J., 2018. 6-dof modelling and control of a remotely operated vehicle. Ph.D. thesis.

Descargas

Publicado

12-07-2024

Número

Sección

Automática Marítima