Contenido principal del artículo

Naroa Núñez Calvo
Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), 20500 Arrasate, Spain
España
https://orcid.org/0009-0009-3757-1716
Gorka Sorrosal
Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), 20500 Arrasate, Spain
España
https://orcid.org/0000-0002-8788-8318
Itziar Cabanes Axpe
Bilbao School of Engineering, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
España
https://orcid.org/0000-0002-1949-953X
Aitziber Mancisidor Barinagarrementeria
Bilbao School of Engineering, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
España
https://orcid.org/0000-0002-2178-345X
Núm. 45 (2024), Robótica
DOI: https://doi.org/10.17979/ja-cea.2024.45.10906
Recibido: jun. 5, 2024 Aceptado: jul. 3, 2024 Publicado: jul. 18, 2024
Derechos de autor

Resumen

Los avances en la industria y tecnología, así como otros factores que los rodean, han generado nuevas exigencias a la hora de fabricar. Últimamente, ha habido un aumento en el uso de los manipuladores móviles, conformado por un brazo robótico montado sobre un robot móvil, para afrontar estas nuevas necesidades. Sin embargo, aún no alcanzan las precisiones que requieren ciertas aplicaciones industriales de gran exigencia. En este artículo se identifican y presentan las fuentes de error principales que aparecen tanto en los manipuladores móviles como en los elementos que lo conforman. Asimismo, se muestran las diferentes soluciones aportadas en la literatura, definiendo sus limitaciones y planteando los retos que quedan aún por abordar. Por último, se plantea una propuesta de control acoplado para conseguir el aumento de precisión de los manipuladores móviles aunando los rasgos positivos de los sistemas que lo componen: la precisión de un brazo robótico y la movilidad que proporciona una plataforma móvil.

Detalles del artículo

Citas

Aguilera, S., Torres-Torriti, M., Auat, F., 10 2014. Modeling of skid-steer mobile manipulators using spatial vector algebra and experimental validation with a compact loader. IEEE International Conference on Intelligent Robots and Systems, 1649–1655. DOI: 10.1109/IROS.2014.6942776 DOI: https://doi.org/10.1109/IROS.2014.6942776

Bai, Q., Li, P., Tian, W., Shen, J., Li, B., Zhang, L., 8 2022. Coordinated motion planning of the mobile redundant manipulator for processing large complex components. International Journal of Advanced Manufacturing Technology 121 (9-10), 6703–6721. DOI: 10.1007/s00170-022-09785-x DOI: https://doi.org/10.1007/s00170-022-09785-x

Boby, R. A., Klimchik, A., 10 2021. Combination of geometric and parametric approaches for kinematic identification of an industrial robot. Robotics and Computer-Integrated Manufacturing 71. DOI: 10.1016/J.RCIM.2021.102142 DOI: https://doi.org/10.1016/j.rcim.2021.102142

Brahmi, A., Saad, M., Brahmi, B., Bojairami, I. E., Gauthier, G., Ghommam, J., 2 2022. Robust adaptive tracking control for uncertain nonholonomic mobile manipulator. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering 236 (2), 395–405. DOI: 10.1177/09596518211027716 DOI: https://doi.org/10.1177/09596518211027716

Brahmi, A., Saad, M., Gauthier, G., Zhu, W. H., Ghommam, J., 2017. Tracking control of mobile manipulator robot based on adaptive backstepping approach. International Journal of Digital Signals and Smart Systems 1 (3), 224. DOI: 10.1504/IJDSSS.2017.088207 DOI: https://doi.org/10.1504/IJDSSS.2017.088207

Feng, Y., Tian, X., Li, T., Jiang, Y., 12 2023. Measurement of mobile manipulator chassis pose change caused by suspension deformation and end-effector accuracy improvement based on multi-sensor fusion. Robotics and Autonomous Systems 170. DOI: 10.1016/J.ROBOT.2023.104553 DOI: https://doi.org/10.1016/j.robot.2023.104553

Ferrarini, S., Bilancia, P., Raffaeli, R., Peruzzini, M., Pellicciari, M., 2 2024. A method for the assessment and compensation of positioning errors in industrial robots. Robotics and Computer-Integrated Manufacturing 85, 102622. DOI: 10.1016/J.RCIM.2023.102622 DOI: https://doi.org/10.1016/j.rcim.2023.102622

Galvan-Perez, D. ., Beltran-Carbajal, F. ., Rivas-Cambero, I. ., Galvan-Perez, D., Beltran-Carbajal, F., Rivas-Cambero, I., Ya˜nez-Badillo, H., Favela-Contreras, A., Tapia-Olvera, R., 8 2023. Motion-Tracking Control of Mobile Manipulation Robotic Systems Using Artificial Neural Networks for Manufacturing Applications. Mathematics 2023, Vol. 11, Page 3489 11 (16), 3489. DOI: 10.3390/MATH11163489 DOI: https://doi.org/10.3390/math11163489

Gonzalez, M. K., Theissen, N. A., Barrios, A., Archenti, A., 8 2022. Online compliance error compensation system for industrial manipulators in contact applications. Robotics and Computer-Integrated Manufacturing 76, 102305. DOI: 10.1016/J.RCIM.2021.102305 DOI: https://doi.org/10.1016/j.rcim.2021.102305

Hvilshøj, M., Bøgh, S., Nielsen, O. S., Madsen, O., 2012. Autonomous industrial mobile manipulation (AIMM): Past, present and future. Industrial Robot 39 (2), 120–135. DOI: 10.1108/01439911211201582 DOI: https://doi.org/10.1108/01439911211201582

Inoue, S., Urata, A., Kodama, T., Huwer, T., Maruyama, Y., Fujita, S., Shinno, H., Yoshioka, H., 9 2021. High-precision mobile robotic manipulator for reconfigurable manufacturing systems. International Journal of Automation Technology 15 (5), 651–660. DOI: 10.20965/IJAT.2021.P0651 DOI: https://doi.org/10.20965/ijat.2021.p0651

Korayem, M. H., Azimirad, V., Nikoobin, A., Boroujeni, Z., 1 2010. Maximum load-carrying capacity of autonomous mobile manipulator in an environment with obstacle considering tip over stability. International Journal of Advanced Manufacturing Technology 46 (5-8), 811–829. DOI: 10.1007/S00170-009-2146-0/METRICS DOI: https://doi.org/10.1007/s00170-009-2146-0

Li, R., Ding, N., Zhao, Y., Liu, H., 2 2023. Real-time trajectory position error compensation technology of industrial robot. Measurement: Journal of the International Measurement Confederation 208. DOI: 10.1016/j.measurement.2022.112418 DOI: https://doi.org/10.1016/j.measurement.2022.112418

Madsen, O., Bøgh, S., Schou, C., Andersen, R. S., Damgaard, J. S., Pedersen, M. R., Kr¨uger, V., 1 2015. Integration of mobile manipulators in an industrial production. Industrial Robot 42 (1), 11–18. DOI: 10.1108/IR-09-2014-0390 DOI: https://doi.org/10.1108/IR-09-2014-0390

Mai, T., 11 2021. Hybrid adaptive tracking control method for mobile manipulator robot based on Proportional–Integral–Derivative technique. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 235 (22), 6463–6480. DOI: 10.1177/09544062211014916 DOI: https://doi.org/10.1177/09544062211014916

Mai, T. L., Tran, H. T., 6 2023. An adaptive robust backstepping improved control scheme for mobile manipulators robot. ISA Transactions 137, 446–456. DOI: 10.1016/J.ISATRA.2023.01.005 DOI: https://doi.org/10.1016/j.isatra.2023.01.005

Meng, J., Wang, S., Li, G., Jiang, L., Zhang, X., Liu, C., Xie, Y., 4 2021. Iterative-learning error compensation for autonomous parking of mobile manipulator in harsh industrial environment. Robotics and Computer-Integrated Manufacturing 68, 102077. DOI: 10.1016/J.RCIM.2020.102077 DOI: https://doi.org/10.1016/j.rcim.2020.102077

Misawa, K., Xu, F., Sekiguchi, K., Nonaka, K., 11 2022. Model predictive control for mobile manipulators considering the mobility range and accuracy of each mechanism. Artificial Life and Robotics 27 (4), 855–866. DOI: 10.1007/S10015-022-00799-Y DOI: https://doi.org/10.1007/s10015-022-00799-y

Moosavian, S. A., Alipour, K., 2007. On the dynamic tip-over stability of wheeled mobile manipulators. International Journal of Robotics andAutomation 22 (4), 322–328. DOI: 10.2316/JOURNAL.206.2007.4.206-3036 DOI: https://doi.org/10.2316/Journal.206.2007.4.206-3036

Oba, Y., Weaver, K., Parwal, A., Nagasue, H., Fujishima, M., 1 2021. High-accuracy pose estimation method for workpiece exchange automation by a mobile manipulator. CIRP Annals 70 (1), 357–360. DOI: 10.1016/J.CIRP.2021.04.050 DOI: https://doi.org/10.1016/j.cirp.2021.04.050

Olabi, A., Damak, M., Bearee, R., Gibaru, O., Leleu, S., 2012. Improving the accuracy of industrial robots by offline compensation of joints errors. 2012 IEEE International Conference on Industrial Technology, ICIT 2012, Proceedings, 492–497. DOI: 10.1109/ICIT.2012.6209986 DOI: https://doi.org/10.1109/ICIT.2012.6209986

Peng, J., Yang, Z., Wang, Y., Zhang, F., Liu, Y., 9 2019. Robust adaptive motion/force control scheme for crawler-type mobile manipulator with nonholonomic constraint based on sliding mode control approach. ISA Transactions 92, 166–179. DOI: 10.1016/J.ISATRA.2019.02.009 DOI: https://doi.org/10.1016/j.isatra.2019.02.009

Ryu, S., Moon, H., 6 2023. Industrial manipulator calibration with geometric and non-geometric parameters for the enhanced positioning accuracy. Journal of Mechanical Science and Technology 37 (6), 3103–3112. DOI: 10.1007/S12206-023-0535-1 DOI: https://doi.org/10.1007/s12206-023-0535-1

Sigron, P., Aschwanden, I., Bambach, M., 2023. Compensation of geometric, backlash, and thermal drift errors using a universal industrial robot model. IEEE Transactions on Automation Science and Engineering. DOI: 10.1109/TASE.2023.3328835 DOI: https://doi.org/10.1109/TASE.2023.3328835

Tzafestas, S. G., 7 2018. Mobile Robot Control and Navigation: A Global Overview. Journal of Intelligent and Robotic Systems: Theory and Applications 91 (1), 35–58. DOI: 10.1007/S10846-018-0805-9/METRICS DOI: https://doi.org/10.1007/s10846-018-0805-9

Wang, Y., Mai, T., Mao, J., 2014. Adaptive motion/force control strategy for non-holonomic mobile manipulator robot using recurrent fuzzy wavelet neural networks. Engineering Applications of Artificial Intelligence 34, 137–153. DOI: 10.1016/j.engappai.2014.05.009 DOI: https://doi.org/10.1016/j.engappai.2014.05.009

Wu, Y., 2014. Optimal pose selection for the identification of geometric and elastostatic parameters of machining robots. Xing, H., Torabi, A., Ding, L., Gao, H., Li, W., Tavakoli, M., 11 2021. Enhancing kinematic accuracy of redundant wheeled mobile manipulators via adaptive motion planning. Mechatronics 79. DOI: 10.1016/J.MECHATRONICS.2021.102639

Xing, H., Torabi, A., Ding, L., Gao, H., Li, W., Tavakoli, M., 11 2021. Enhancing kinematic accuracy of redundant wheeled mobile manipulators via adaptive motion planning. Mechatronics 79. DOI: 10.1016/J.MECHATRONICS.2021.102639 DOI: https://doi.org/10.1016/j.mechatronics.2021.102639

Yang, M., Yang, E., Zante, R. C., Post, M., Liu, X., 9 2019. Collaborative mobile industrial manipulator: A review of system architecture and applications. ICAC 2019 - 2019 25th IEEE International Conference on Automation and Computing. DOI: 10.23919/ICONAC.2019.8895183 DOI: https://doi.org/10.23919/IConAC.2019.8895183

Yaw, A. F. S., Messina, M., Medeiros, H., Marvel, J., Bostelman, R., 2018. Stochastic search methods for mobile manipulators. Procedia Manufacturing 17, 976–984. DOI: 10.1016/J.PROMFG.2018.10.106 DOI: https://doi.org/10.1016/j.promfg.2018.10.106

Yu, T., Chang, Q., 11 2023. Scalable motion planning and task-oriented coordination scheme for mobile manipulators in smart manufacturing. Journal of Intelligent and Robotic Systems: Theory and Applications 109 (3). DOI: 10.1007/S10846-023-02005-Y DOI: https://doi.org/10.1007/s10846-023-02005-y

Yuan, W., Liu, Y. H., Su, C. Y., Zhao, F., 3 2023. Whole-Body Control of an Autonomous Mobile Manipulator Using Model Predictive Control and Adaptive Fuzzy Technique. IEEE Transactions on Fuzzy Systems 31 (3), 799–809. DOI: 10.1109/TFUZZ.2022.3189808 DOI: https://doi.org/10.1109/TFUZZ.2022.3189808

Zheng, Y., Liu, Y., Song, R., Ma, X., Li, Y., 6 2022. Adaptive neural control for mobile manipulator systems based on adaptive state observer. Neurocomputing 489, 504–520. DOI: 10.1016/J.NEUCOM.2021.12.062 DOI: https://doi.org/10.1016/j.neucom.2021.12.062

Zhou, Z., Yang, X., Wang, H., Zhang, X., 10 2022. Coupled dynamic modeling and experimental validation of a collaborative industrial mobile manipulator with human-robot interaction. Mechanism and Machine Theory 176. DOI: 10.1016/J.MECHMACHTHEORY.2022.105025 DOI: https://doi.org/10.1016/j.mechmachtheory.2022.105025