A plane-based method for extrinsic calibration of RGB and depth cameras

Autores/as

  • Dominik Aigner Universidad de Málaga
  • Javier González Jiménez Universidad de Málaga

DOI:

https://doi.org/10.17979/ja-cea.2024.45.10928

Palabras clave:

Detección, Integración de sensores y percepción, Tecnología robótica, Percepción y detección, Información y fusión sensorial

Resumen

Este artículo presenta un método, implementado en ROS2, para la calibración extrínseca de un conjunto heterogeneo de cámaras que incluyen tanto RGB como de profundidad. El método propuesto estima las poses relativas entre dichas cámaras a partir de la observacion de planos. Para ello, en primer lugar, se extraen y emparejan los vectores normales de las superficies planas de las imágenes (RGB y de profundidad). En segundo lugar, se plantea un problema de optimización que estima las rotaciones y traslaciones que minimizan los errores entre los pares de vectores normales en correspondencia. La aplicación utiliza algoritmos disponibles en librarias estándar para la extracción de planos (OpenCV, PCL) y optimización (Eigen). La eficacia y precisicón del método se ilustran en una configuración con dos cámaras RGB y una cámara de profundidad.

Citas

Arun, K. S., Huang, T. S., Blostein, S. D., 1987. Least-squares fitting of two 3-d point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-9 (5), 698–700. DOI: https://doi.org/10.1109/TPAMI.1987.4767965

Basso, F., Menegatti, E., Pretto, A., 2018. Robust intrinsic and extrinsic calibration of rgb-d cameras. IEEE Transactions on Robotics 34 (5), 1315–1332. DOI: https://doi.org/10.1109/TRO.2018.2853742

Chen, G., Cui, G., Jin, Z., Wu, F., Chen, X., 2018. Accurate intrinsic and extrinsic calibration of rgb-d cameras with gp-based depth correction. IEEE Sensors Journal 19 (7), 2685–2694. DOI: https://doi.org/10.1109/JSEN.2018.2889805

Fernandez-Moral, E., González-Jiménez, J., Rives, P., Arévalo, V., 2014. Extrinsic calibration of a set of range cameras in 5 seconds without pattern. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 429–435. DOI: https://doi.org/10.1109/IROS.2014.6942595

Geiger, A., Moosmann, F., Car, Ö., Schuster, B., 2012. Automatic camera and range sensor calibration using a single shot. In: 2012 IEEE international conference on robotics and automation. IEEE, pp. 3936–3943. DOI: https://doi.org/10.1109/ICRA.2012.6224570

Giancola, S., Valenti, M., Sala, R., 2018. A survey on 3d cameras: Metrological comparison of time-of-flight, structured-light and active stereoscopy technologies. DOI: https://doi.org/10.1007/978-3-319-91761-0

Heikkila, J., Silvén, O., 1997. A four-step camera calibration procedure with implicit image correction. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition. IEEE, pp. 1106–1112.

Holz, D., Behnke, S., 2013. Fast range image segmentation and smoothing using approximate surface reconstruction and region growing. In: Intelligent Autonomous Systems 12: Volume 2 Proceedings of the 12th International Conference IAS-12, held June 26-29, 2012, Jeju Island, Korea. Springer, pp. 61–73. DOI: https://doi.org/10.1007/978-3-642-33932-5_7

Honti, R., Erdélyi, J., Kopáčik, A., 2018. Plane segmentation from point clouds. Pollack Periodica 13 (2), 159–171. DOI: https://doi.org/10.1556/606.2018.13.2.16

Lepetit, V., Moreno-Noguer, F., Fua, P., 2009. Ep n p: An accurate o (n) solution to the p n p problem. International journal of computer vision 81, 155–166. DOI: https://doi.org/10.1007/s11263-008-0152-6

Lv, Y., Feng, J., Li, Z., Liu, W., Cao, J., 2015. A new robust 2d camera calibration method using ransac. Optik 126 (24), 4910–4915. DOI: https://doi.org/10.1016/j.ijleo.2015.09.117

Nguyen, A., Le, B., 2013. 3d point cloud segmentation: A survey. In: 2013 6th IEEE conference on robotics, automation and mechatronics (RAM). IEEE, pp. 225–230. DOI: https://doi.org/10.1109/RAM.2013.6758588

Pandey, G., McBride, J., Savarese, S., Eustice, R., 2010. Extrinsic calibration of a 3d laser scanner and an omnidirectional camera. IFAC Proceedings Volumes 43 (16), 336–341. DOI: https://doi.org/10.3182/20100906-3-IT-2019.00059

Pandey, G., McBride, J., Savarese, S., Eustice, R., 2012. Automatic targetless extrinsic calibration of a 3d lidar and camera by maximizing mutual information. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 26. pp. 2053–2059. DOI: https://doi.org/10.1609/aaai.v26i1.8379

Park, Y., Yun, S., Won, C. S., Cho, K., Um, K., Sim, S., 2014. Calibration between color camera and 3d lidar instruments with a polygonal planar board. Sensors 14 (3), 5333–5353. DOI: https://doi.org/10.3390/s140305333

Poppinga, J., Vaskevicius, N., Birk, A., Pathak, K., 2008. Fast plane detection and polygonalization in noisy 3d range images. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 3378–3383. DOI: https://doi.org/10.1109/IROS.2008.4650729

Pusztai, Z., Hajder, L., 2017. Accurate calibration of lidar-camera systems using ordinary boxes. In: Proceedings of the IEEE International Conference on Computer Vision Workshops. pp. 394–402. DOI: https://doi.org/10.1109/ICCVW.2017.53

Sorkine-Hornung, O., Rabinovich, M., 2017. Least-squares rigid motion using svd. Computing 1 (1), 1–5. DOI: https://doi.org/10.1145/3072959.3126782

Su, P.-C., Shen, J., Xu, W., Cheung, S.-C. S., Luo, Y., 2018. A fast and robust extrinsic calibration for rgb-d camera networks. Sensors 18 (1), 235. DOI: https://doi.org/10.3390/s18010235

Trevor, A., Gedikli, S., Rusu, R. B., Christensen, H. I., 2013. Efficient organized point cloud segmentation with connected components. Semantic Perception Mapping and Exploration (SPME) 1.

Zhang, Q., Pless, R., 2004. Extrinsic calibration of a camera and laser range finder (improves camera calibration). In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). Vol. 3. IEEE, pp. 2301–2306.

Zhang, Q., Wu, S., Wang, W., Fang, Z., 2017. Improving 2d camera calibration by lo-ransac. Int. J. Inf. Electron. Eng 7, 93–98. DOI: https://doi.org/10.18178/IJIEE.2017.7.3.668

Zhang, Z., 2000. A flexible new technique for camera calibration. IEEE Transactions on pattern analysis and machine intelligence 22 (11), 1330–1334. DOI: https://doi.org/10.1109/34.888718

Zhou, F., Cui, Y., Wang, Y., Liu, L., Gao, H., 2013. Accurate and robust estimation of camera parameters using ransac. Optics and Lasers in Engineering 51 (3), 197–212. DOI: https://doi.org/10.1016/j.optlaseng.2012.10.012

Zúñiga Nöel, D., Gómez Ojeda, R., Moreno, F. Á., González Jiménez, J., et al., 2017. Calibración extrı́nseca de un conjunto de cámaras rgb-d sobre un robot móvil. Actas de las XXXVIII Jornadas de Automática.

Descargas

Publicado

19-07-2024

Número

Sección

Visión por Computador