Enfoque general y sistemático para percepción activa semántica en robótica
DOI:
https://doi.org/10.17979/ja-cea.2024.45.10938Palabras clave:
Tecnología robótica, Robótica móvil, Percepción y sensorizaciónResumen
En este artículo, abordamos el problema de la percepción activa de información semántica, centrado en determinar las acciones que un robot móvil debe realizar para obtener información semántica de calidad del entorno. Con el auge de los algoritmos de percepción semántica, surgen nuevas oportunidades para los sistemas de planificación robóticos. Sin embargo, para aprovechar estas oportunidades, es crucial identificar los elementos esenciales que cualquier sistema de control orientado a la percepción debe tener. Para ello, proponemos una arquitectura general aplicable a cualquier sistema de percepción activa y analizamos las diferencias fundamentales que surgen al considerar información semántica en su diseño. Además, describimos una implementación preliminar de la arquitectura propuesta. Nuestro objetivo principal es proporcionar a los investigadores una formulación general y un sistema unificado y modular que facilite el avance en el campo de la percepción activa semántica.
Referencias
Álvaro, S.-G., Montijano, E., Böhmer, W., Alonso-Mora, J., 2023. Active classification of moving targets with learned control policies. IEEE Robotics and Automation Letters 8 (6), 3717–3724.
Asgharivaskasi, A., Atanasov, N., 2021. Active bayesian multi-class mapping from range and semantic segmentation observations. In: 2021 IEEE International Conference on Robotics and Automation. pp. 1–7.
Asgharivaskasi, A., Atanasov, N., 2023. Semantic octree mapping and shannon mutual information computation for robot exploration. IEEE Transactions on Robotics 39 (3), 1910–1928.
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoderdecoder with atrous separable convolution for semantic image segmentation. In: European Conference on Computer Vision.
Dai, A., Papatheodorou, S., Funk, N., Tzoumanikas, D., Leutenegger, S., 2020. Fast frontier-based information-driven autonomous exploration with an mav. In: IEEE International Conference on Robotics and Automation. pp. 9570–9576.
Elfes, A., 1989. Using occupancy grids for mobile robot perception and navigation. Computer 22 (6), 46–57.
Feldman, Y., Indelman, V., 2020. Spatially-dependent bayesian semantic perception under model and localization uncertainty. Autonomous Robots 44 (6), 1091–1119.
Grinvald, M., Furrer, F., Novkovic, T., Chung, J. J., Cadena, C., Siegwart, R., Nieto, J., 2019. Volumetric instance-aware semantic mapping and 3d object discovery. IEEE Robotics and Automation Letters 4 (3), 3037–3044.
Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., Burgard, W., Apr 2013. Octomap: an efficient probabilistic 3d mapping framework based on octrees. Autonomous Robots 34 (3), 189–206.
Isler, S., Sabzevari, R., Delmerico, J., Scaramuzza, D., 2016. An information gain formulation for active volumetric 3d reconstruction. In: IEEE International Conference on Robotics and Automation. pp. 3477–3484.
Kompis, Y., Bartolomei, L., Mascaro, R., Teixeira, L., Chli, M., 2021. Informed sampling exploration path planner for 3d reconstruction of large scenes. IEEE Robotics and Automation Letters 6 (4), 7893–7900.
Liu, X., Prabhu, A., Cladera, F., Miller, I. D., Zhou, L., Taylor, C. J., Kumar, V., 2023. Active metric-semantic mapping by multiple aerial robots. In: IEEE International Conference on Robotics and Automation. pp. 3282–3288.
Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K., 2010. The office marathon: Robust navigation in an indoor office environment. In: IEEE International Conference on Robotics and Automation. pp. 300–307.
Marques, J. M. C., Zhai, A., Wang, S., Hauser, K., 2023. On the overconfidence problem in semantic 3d mapping. arXiv preprint arXiv:2311.10018.
McCormac, J., Handa, A., Davison, A., Leutenegger, S., 2017. Semanticfusion: Dense 3d semantic mapping with convolutional neural networks. In: IEEE International Conference on Robotics and Automation. pp. 4628–4635.
Milioto, A., Vizzo, I., Behley, J., Stachniss, C., 2019. Rangenet ++: Fast and accurate lidar semantic segmentation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 4213–4220.
Morilla-Cabello, D., Mur-Labadia, L., Martinez-Cantin, R., Montijano, E., 2023a. Robust fusion for bayesian semantic mapping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 76–81.
Morilla-Cabello, D., Westheider, J., Popovic, M., Montijano, E., 2023b. Perceptual factors for environmental modeling in robotic active perception. arXiv preprint arXiv:2309.10620.
Nießner, M., Zollh¨ofer, M., Izadi, S., Stamminger, M., nov 2013. Real-time 3d reconstruction at scale using voxel hashing. ACM Trans. Graph. 32 (6).
Oleynikova, H., Taylor, Z., Fehr, M., Siegwart, R., Nieto, J., 2017. Voxblox: Incremental 3d euclidean signed distance fields for on-board mav planning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 1366–1373.
Papatheodorou, S., Funk, N., Tzoumanikas, D., Choi, C., Xu, B., Leutenegger, S., 2023. Finding things in the unknown: Semantic object-centric exploration with an mav. In: IEEE International Conference on Robotics and Automation. pp. 3339–3345.
Popovic, M., Vidal-Calleja, T., Hitz, G., Chung, J. J., Sa, I., Siegwart, R., Nieto, J., 2020. An informative path planning framework for uav-based terrain monitoring. Autonomous Robots 44 (6), 889–911.
Puig, X., Undersander, E., Szot, A., Cote, M. D., Partsey, R., Yang, J., Desai, R., Clegg, A. W., Hlavac, M., Min, T., Gervet, T., Vondrus, V., Berges, V.-P., Turner, J., Maksymets, O., Kira, Z., Kalakrishnan, M., Malik, J., Chaplot, D. S., Jain, U., Batra, D., Rai, A., Mottaghi, R., 2024. Habitat 3.0: A co-habitat for humans, avatars and robots.
Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 779–788.
Rosinol, A., Violette, A., Abate, M., Hughes, N., Chang, Y., Shi, J., Gupta, A., Carlone, L., 2021. Kimera: From slam to spatial perception with 3d dynamic scene graphs. The International Journal of Robotics Research 40 (12-14), 1510–1546.
Rückin, J., Jin, L., Popovic, M., 2022. Adaptive informative path planning using deep reinforcement learning for uav-based active sensing. In: International Conference on Robotics and Automation. pp. 4473–4479.
Schmid, L., Pantic, M., Khanna, R., Ott, L., Siegwart, R., Nieto, J., 2020. An efficient sampling-based method for online informative path planning in unknown environments. IEEE Robotics and Automation Letters 5 (2), 1500–1507.
Shah, S., Dey, D., Lovett, C., Kapoor, A., 2018. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In: Field and Service Robotics. pp. 621–635.
Song, Y., Naji, S., Kaufmann, E., Loquercio, A., Scaramuzza, D., 2021. Flightmare: A flexible quadrotor simulator. In: Conference on Robot Learning. pp. 1147–1157.
Zhou, B., Zhang, Y., Chen, X., Shen, S., 2021. Fuel: Fast uav exploration using incremental frontier structure and hierarchical planning. IEEE Robotics and Automation Letters 6 (2), 779–786.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 David Morilla Cabello, Eduardo Montijano

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.