Transfer Learning for Time-series Forecasting of Greenhouse Microclimate
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12186Palabras clave:
Transfer Learning, Greenhouse Modeling, Transformers, Time-series Prediction, Multi-step PredictionResumen
This paper presents the adaption of a data-driven model of the microclimate of a first greenhouse (of 877 m2) to a second, different greenhouse (of 1900 m2) by using transfer learning. The temporal evolution of temperature and humidity inside the first greenhouse were modeled using a transformer-based model. The transformer was trained and validated with an 81-day dataset from the first greenhouse, for multi-step prediction of the microclimate. Subsequently, the transformer was used with a 48-day dataset from the second greenhouse. Transfer learning was used to fine-tune the weights and biases of the transformer. Results show that, by using transfer learning, only two days of data were necessary to train the transferred model. This also shows that the initial transfomer generalized well and learned basic greenhouse dynamics that only need to be adapted slightly when greenhouse specifications change. Therefore, transfer learning is presented as a method that can facilitate the reuse or adaptation of neural-based predictive controllers between different greenhouses.
Referencias
Fink, M., Daniels, A., García-Mañas, F., Rodríguez, F., Leibold, M.,Wollherr, D., 2025. Learning-based model identification for greenhouse climate control. at - Automatisierungstechnik 73 (6), 451–465. DOI: doi:10.1515/auto-2024-0163
Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y. N., 2017. Convolutional sequence to sequence learning. In: Proceedings of the 34th International Conference on Machine Learning - Volume 70. ICML’17. JMLR.org, p. 1243–1252.
Guo, Z., Feng, L., 2024. Multi-step prediction of greenhouse temperature and humidity based on temporal position attention LSTM. Stochastic Environmental Research and Risk Assessment 38 (12), 4907–4934. DOI: 10.1007/s00477-024-02840-x
Ismail Fawaz, H., Forestier, G.,Weber, J., Idoumghar, L., Muller, P.-A., 2018. Transfer learning for time series classification. In: 2018 IEEE International Conference on Big Data (Big Data). IEEE, p. 1367–1376. DOI: 10.1109/bigdata.2018.8621990
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al., 2017. Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences 114 (13), 3521–3526.
Lee, J., Im, S., Jeong, J.-S., Lee, T. S., Park, S. H., Shin, C., Ju, H., Kim, H.-J., 2025. Learning hidden relationship between environment and control variables for direct control of automated greenhouse using transformer-based model. Computers and Electronics in Agriculture 235, 110335. DOI: 10.1016/j.compag.2025.110335
Lim, B., Arık, S. Ö ., Loeff, N., Pfister, T., 2021. Temporal fusion transformers for interpretable multi-horizon time series forecasting. International Journal of Forecasting 37 (4), 1748–1764. DOI: https://doi.org/10.1016/j.ijforecast.2021.03.012
Lin, Y.-S., Fang, S.-L., Kang, L., Chen, C.-C., Yao, M.-H., Kuo, B.-J., 2024. Combining recurrent neural network and sigmoid growth models for shortterm temperature forecasting and tomato growth prediction in a plastic greenhouse. Horticulturae 10 (3). DOI: 10.3390/horticulturae10030230
Moon, T., Eek Son, J., 2021. Knowledge transfer for adapting pre-trained deep neural models to predict different greenhouse environments based on a low quantity of data. Computers and Electronics in Agriculture 185, 106136. DOI: https://doi.org/10.1016/j.compag.2021.106136
Pan, S. J., Yang, Q., 2010. A survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering 22 (10), 1345–1359. DOI: 10.1109/TKDE.2009.191
Patil, A., Viquerat, J., Hachem, E., 2023. Autoregressive transformers for data-driven spatiotemporal learning of turbulent flows. APL Machine Learning 1 (4), 046101. DOI: 10.1063/5.0152212
Robbins, H. E., 1951. A stochastic approximation method. Annals of Mathematical Statistics 22, 400–407.
Rodríguez, F., Berenguel, M., Guzmán, J. L., Ramírez-Arias, A., 2015. Modeling and control of greenhouse crop growth. Springer, Cham, Switzerland. DOI: 10.1007/978-3-319-11134-6
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 15 (56), 1929–1958.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., Polosukhin, I., 2017. Attention is all you need. In: Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.), Advances in Neural Information Processing Systems. Vol. 30. Curran Associates, Inc., p. 5998–6008.
Wu, C., Wu, F., Qi, T., Huang, Y., 2022. NoisyTune: A little noise can help you finetune pretrained language models better. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Dublin, Ireland, pp. 680–685. DOI: 10.18653/v1/2022.acl-short.76
Zhao, X., Han, Y., Lewlomphaisarl, U., Wang, H., Hua, J., Wang, X., Kang, M., 2022. Parallel control of greenhouse climate with a transferable prediction model. IEEE Journal of Radio Frequency Identification 6, 857–861. DOI: 10.1109/JRFID.2022.3204363
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Paul Loer, Annalena Daniels, Michael Fink, Francisco García-Mañas, Dirk Wollherr, Francisco Rodríguez

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.