Structural identifiability and observability of tumour growth models with and without chemotherapy
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12194Palabras clave:
modelos matemáticos, modelos dinámicos, biología matemática, oncología matemática, crecimiento tumoral, quimioterapiaResumen
En este trabajo se presenta una guía de modelos mecanísticos para el estudio del crecimiento tumoral, basados en ecuaciones diferenciales ordinarias (EDOs). El análisis se centra en las propiedades de identificabilidad estructural y observabilidad, fundamentales para la estimación de parámetros y la obtención de predicciones fiables. Se analizan modelos representativos que incluyen procesos sin terapia y con quimioterapia. Se ofrecen resultados agrupados por tipo de modelo, proporcionando una visión general sobre su aplicabilidad y limitaciones. Esta guía está pensada como apoyo para la selección de modelos en aplicaciones biomédicas.
Referencias
Anderson, A. R., Maini, P. K., 2018. Mathematical oncology. Bulletin of mathematical biology 80 (5), 945–953.
Banga, J. R., Balsa-Canto, E., 2008. Parameter estimation and optimal experimental design. Essays in biochemistry 45, 195–210.
Bull, J. A., Byrne, H. M., 2022. The hallmarks of mathematical oncology. Proceedings of the IEEE 110 (5), 523–540. DOI: 10.1109/jproc.2021.3136715
Díaz-Seoane, S., Rey Barreiro, X., Villaverde, A. F., 2023. Strike-goldd 4.0: user-friendly, efficient analysis of structural identifiability and observability. Bioinformatics 39 (1), btac748.
DiStefano III, J., 2015. Dynamic systems biology modeling and simulation. Academic Press.
Enderling, H.,Wolkenhauer, O., 2021. Are all models wrong? Computational and systems oncology 1 (1), e1008.
Fröhlich, F., Kessler, T., Weindl, D., Shadrin, A., Schmiester, L., Hache, H., Muradyan, A., Schütte, M., Lim, J.-H., Heinig, M., et al., 2018. Efficient parameter estimation enables the prediction of drug response using a mechanistic pan-cancer pathway model. Cell systems 7 (6), 567–579.
Gunnarsson, E. B., Kim, S., Choi, B., Schmid, J. K., Kaura, K., Lenz, H., Mumenthaler, S. M., Foo, J., 2024. Understanding patient-derived tumor organoid growth through an integrated imaging and mathematical modeling framework. PLoS computational biology 20 (8), e1012256. DOI: 10.1371/journal.pcbi.1012256
Hanahan, D., 2022. Hallmarks of cancer: new dimensions. Cancer discovery 12 (1), 31–46.
Hanahan, D., Weinberg, R. A., 2000. The hallmarks of cancer. Cell 100 (1), 57–70.
Hanahan, D., Weinberg, R. A., 2011. Hallmarks of cancer: the next generation. Cell 144 (5), 646–674.
Jawad, S.,Winter, M., Rahman, Z.-A. S., Al-Yasir, Y. I., Zeb, A., 2023. Dynamical behavior of a cancer growth model with chemotherapy and boosting of the immune system. Mathematics 11 (2), 406.
Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H., 2005. Systems biology in practice: concepts, implementation and application. JohnWiley & Sons.
Liepe, J., Kirk, P., Filippi, S., Toni, T., Barnes, C. P., Stumpf, M. P., 2014. A framework for parameter estimation and model selection from experimental data in systems biology using approximate bayesian computation. Nature protocols 9 (2), 439–456.
Lorenzo, G., Jarrett, A. M., Meyer, C. T., DiCarlo, J. C., Virostko, J., Quaranta, V., Tyson, D. R., Yankeelov, T. E., 2024. A global sensitivity analysis of a mechanistic model of neoadjuvant chemotherapy for triple negative
breast cancer constrained by in vitro and in vivo imaging data. Engineering with computers 40 (3), 1469–1499.
Mahmoodifar, S., Newton, P. K., 2024. Gaming the cancer-immunity cycle by synchronizing the dose schedules. bioRxiv. DOI: 10.1101/2024.10.31.621326
Nieto, C. M., Pimentel, O. M., Lora-Clavijo, F. D., 2024. Novel second-order model for tumor evolution: description of cytostatic and cytotoxic effects. arXiv preprint arXiv:2407.05143.
Paczkowski, M., Kretzschmar, W. W., Markelc, B., et al., 2021. Reciprocal interactions between tumour cell populations enhance growth and reduce radiation sensitivity in prostate cancer. Communications biology 4, 6. DOI: 10.1038/s42003-020-01529-5
Phan, T., Bennett, J., Patten, T., 2023. Practical understanding of cancer model identifiability in clinical applications. Life 13 (2), 410.
Simpson, M. J., Maclaren, O. J., 2023. Profile-wise analysis: A profile likelihood-based workflow for identifiability analysis, estimation, and prediction with mechanistic mathematical models. PLOS computational biology 19 (9), e1011515.
Villaverde, A. F., 2019. Observability and structural identifiability of nonlinear biological systems. Complexity 2019 (1), 8497093.
Villaverde, A. F., Banga, J. R., 2014. Reverse engineering and identification in systems biology: strategies, perspectives and challenges. Journal of the Royal Society Interface 11 (91), 20130505.
Villaverde, A. F., Pathirana, D., Föhlich, F., Hasenauer, J., Banga, J. R., 2022. A protocol for dynamic model calibration. Briefings in bioinformatics 23 (1), bbab387.
Wieland, F.-G., Hauber, A. L., Rosenblatt, M., Tönsing, C., Timmer, J., 2021. On structural and practical identifiability. Current opinion in systems biology 25, 60–69.
Yin, A., Moes, D. J. A., van Hasselt, J. G., Swen, J. J., Guchelaar, H.-J., 2019. A review of mathematical models for tumor dynamics and treatment resistance evolution of solid tumors. CPT: pharmacometrics & systems pharmacology 8 (10), 720–737.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Adriana González Vázquez, Alejandro F. Villaverde

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.