Auditoría funcional de juguetes IoT con Bluetooth LE

Autores/as

  • Jose Aveleira-Mata Universidad de León
  • Diego Narciandi-Rodríguez Universidad de León
  • Isaías García-Rodríguez Universidad de León
  • Javier Alfonso-Cendón Universidad de León
  • Sergio Rubio-Martín Universidad de León
  • Héctor Alaiz-Moretón Universidad de León

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12272

Palabras clave:

Seguridad en sistemas embebidos, Análisis de tráfico BLE, Juguetes conectados, Detección de intrusiones, IoT doméstico, Auditoría de dispositivos, Comunicaciones inalámbricas seguras

Resumen

Este trabajo presenta una auditoría funcional de dispositivos comerciales con conectividad Bluetooth Low Energy (BLE), centrada en juguetes conectados en el contexto del Internet de las Cosas (IoT). Se empleó una metodología basada en el uso de dos dongles nRF52840: uno configurado como escáner para identificar direcciones MAC aleatorias, y otro como sniffer BLE integrado en Wireshark para capturar el tráfico entre el dispositivo y su aplicación. Las capturas muestran que varios de los dispositivos analizados transmiten datos sin cifrado ni autenticación, lo que permite ataques como interceptación, inyección de comandos o repetición de mensajes. Como línea de trabajo futuro, se propone el uso de las capturas obtenidas para entrenar modelos de detección de anomalías mediante aprendizaje automático.

Referencias

, 02 2023. Introduction to bluetooth low energy (ble). URL: https://www.argenox.com/library/bluetooth-low-energy/introduction-to-bluetooth-low-energy-v4-0/

, 01 2025. nrf sniffer for bluetooth le. URL: https://www.nordicsemi.com/Products/Development-tools/nrf-sniffer-for-bluetooth-le/download

Allana, S., Chawla, S., 08 2020. Childshield: A rating system for assessing privacy and security of internet of toys. Telematics and Informatics 56, 101477–101477. URL: https://doi.org/10.1016/j.tele.2020.101477 DOI: doi:10.1016/j.tele.2020.101477

Chu, G., Apthorpe, N., Feamster, N., 01 2018. Security and privacy analyses of internet of things children’s toys. arXiv. URL: https://arxiv.org/abs/1805.02751 DOI: doi:10.48550/ARXIV.1805.02751

Classen, J., Hollick, M., 06 2021. Happy mitm. URL: https://doi.org/10.1145/3448300.3467822 DOI: doi:10.1145/3448300.3467822

de Carvalho, L. G., Eler, M. M., 01 2017. Security requirements for smart toys, 144–154. URL: https://doi.org/10.5220/0006337001440154 DOI: doi:10.5220/0006337001440154

de Paula Albuquerque, O., Fantinato, M., Kelner, J., de Albuquerque, A. P., 12 2019. Privacy in smart toys: Risks and proposed solutions. Electronic Commerce Research and Applications 39, 100922–100922. URL: https://doi.org/10.1016/j.elerap.2019.100922 DOI: doi:10.1016/j.elerap.2019.100922

INCIBE, 01 2024. Estudio de la ciberseguridad juguetes conectados. Tech. rep. URL: https://www.incibe.es/sites/default/files/espacios/ed2026/laboratorio/EstudioINCIBE_ciberseguridad_juguetes_conectados.pdf

Koulouras, G., Katsoulis, S., Zantalis, F., 02 2025. Evolution of bluetooth technology: Ble in the iot ecosystem. URL: https://doi.org/10.3390/s25040996 DOI: doi:10.3390/s25040996

Lonzetta, A. M., Cope, P., Campbell, J. P., Mohd, B. J., Hayajneh, T., 07 2018. Security vulnerabilities in bluetooth technology as used in iot. Journal of Sensor and Actuator Networks 7, 28–28. URL: https://doi.org/10.3390/jsan7030028 DOI: doi:10.3390/jsan7030028

Nagrare, T., Sindhewad, P., Kazi, F., 01 2023. Ble protocol in iot devices and smart wearable devices: Security and privacy threats. arXiv (Cornell University). URL: https://arxiv.org/abs/2301.03852 DOI: doi:10.48550/arxiv.2301.03852

Radhakrishnan, I., Jadon, S., Honnavalli, P. B., 06 2024. Efficiency and security evaluation of lightweight cryptographic algorithms for resourceconstrained iot devices. Sensors 24, 4008–4008. URL: https://doi.org/10.3390/s24124008 DOI: doi:10.3390/s24124008

Sivakumaran, P., Blasco, J., 01 2021. argxtract: Deriving iot security configurations via automated static analysis of stripped arm binaries. arXiv (Cornell University). URL: https://arxiv.org/abs/2105.03135 DOI: doi:10.48550/arxiv.2105.03135

Vervloesem, K., 06 2022. Develop your own bluetooth low energy applications for raspberry pi. URL: https://koen.vervloesem.eu/books/

vinnter, 02 2023. What’s new with ble5? and how does it compare to ble4? URL: vinnter.se/whats-new-with-ble5-and-how-does-it-compare-to-ble4/

Wang, Z., 02 2024. Securing bluetooth low energy: A literature review. URL: https://arxiv.org/abs/2404.16846 DOI: doi:10.48550/arXiv.2404.16846

Want, R., Schilit, B. N., Laskowski, D., 10 2013. Bluetooth le finds its niche. IEEE Pervasive Computing 12, 12–16. URL: https://doi.org/10.1109/mprv.2013.60 DOI: doi:10.1109/mprv.2013.60

Wen, H., Lin, Z., Zhang, Y., 10 2020. Firmxray: Detecting bluetooth link layer vulnerabilities from bare-metal firmware. URL: https://doi.org/10.1145/3372297.3423344 DOI: doi:10.1145/3372297.3423344

White, N., 06 2024. Using the nordic nrf sniffer for ble. URL: https://dojofive.com/blog/ using-the-nordic-nrf-sniffer-for-ble/

Zachariah, T., Clark, M., Dutta, P., 10 2018. Bluetooth low energy in the wild dataset, 27–28. URL: https://doi.org/10.1145/3277868.3277882 DOI: doi:10.1145/3277868.3277882

Zhang, Y., Weng, J., Dey, R., Fu, X., 01 2020. Bluetooth low energy (ble) security and privacy. Springer eBooks, 123–134. URL: https://doi.org/10.1007/978-3-319-78262-1_298 DOI: doi:10.1007/978-3-319-78262-1_298

Descargas

Publicado

01-09-2025

Número

Sección

Computadores y Control