Revisión del uso de IA en Entornos No Estructurados Transitables

Autores/as

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12098

Palabras clave:

Técnicas de inteligencia artificial, Aprendizaje automático, Percepción y sensorización, Robots móviles autónomos, Vehículos autónomos, Fusión de datos sensoriales, Navegación robótica

Resumen

La navegación autónoma de UGVs supone un gran desafío cuando se efectúa en entornos 3D no estructurados. Las condiciones irregulares y áltamente dinámicas de estas áreas dificulta el uso de métodos convencionales basados en reglas o modelos manuales, siendo necesario un análisis profundo de la transitabilidad. Este trabajo presenta una revisión exhaustiva del estado del arte sobre las técnicas de IA aplicadas en este campo. Se analizan los diferentes paradigmas de aprendizaje y la evolución de diferentes arquitecturas, examinando sus avances, limitaciones y oportunidades para lograr una navegación autónoma robusta.

Referencias

Ahtiainen, J., Stoyanov, T., Saarinen, J., 5 2017. Normal Distributions Transform Traversability Maps: LIDAR-Only Approach for Traversability Mapping in Outdoor Environments. Journal of Field Robotics 34 (3), 600–621. DOI: 10.1002/ROB.21657

Arena, P., Patanè, L., Taffara, S., 10 2021. Learning risk-mediated traversability maps in unstructured terrains navigation through robot-oriented models. Information Sciences 576, 1–23. DOI: 10.1016/J.INS.2021.06.007

Beycimen, S., Ignatyev, D., Zolotas, A., 11 2023. A comprehensive survey of unmanned ground vehicle terrain traversability for unstructured environments and sensor technology insights. Engineering Science and Technology, an International Journal 47, 101457. DOI: 10.1016/J.JESTCH.2023.101457

Borges, P. V. K., Peynot, T., Liang, S., Arain, B.,Wildie, M., Minareci, M. G., Lichman, S., Samvedi, G., Sa, I., Hudson, N., Milford, M., Moghadam, P., Corke, P., 2022. A Survey on Terrain Traversability Analysis for Autonomous Ground Vehicles: Methods, Sensors, and Challenges. DOI: 10.55417/fr.2022049

Castro, M. G., Triest, S.,Wang,W., Gregory, J. M., Sanchez, F., Rogers, J. G., Scherer, S., 9 2022. How Does It Feel? Self-Supervised Costmap Learning for Off-Road Vehicle Traversability. Proceedings - IEEE International

Conference on Robotics and Automation 2023-May, 931–938. DOI: 10.1109/ICRA48891.2023.10160856

Chavez-Garcia, R. O., Guzzi, J., Gambardella, L. M., Giusti, A., 7 2018. Learning Ground Traversability from Simulations. IEEE Robotics and Automation Letters 3 (3), 1695–1702. DOI: 10.1109/LRA.2018.2801794

Dabbiru, L., Sharma, S., Goodin, C., Ozier, S., Hudson, C. R., Carruth, D. W., Doude, M., Mason, G., Ball, J. E., 4 2021. Traversability mapping in off-road environment using semantic segmentation. https://doi.org/10.1117/12.2587661 11748, 78–83. DOI: 10.1117/12.2587661

Guastella, D. C., Muscato, G., 12 2020. Learning-Based Methods of Perception and Navigation for Ground Vehicles in Unstructured Environments: A Review. Sensors 2021, Vol. 21, Page 73 21 (1), 73. DOI: 10.3390/S21010073

Hirose, N., Sadeghian, A., Vazquez, M., Goebel, P., Savarese, S., 2018. GONet: A Semi-Supervised Deep Learning Approach for Traversability Estimation. IEEE International Conference on Intelligent Robots and Systems, 3044–3051. DOI: 10.1109/IROS.2018.8594031

Huang, T., Wang, G., Liu, H., Luo, J., Wu, L., Zhu, T., Pu, H., Wang, S., 2024. A Framework for Real-time Generation of Multi-directional Traversability Maps in Unstructured Environments. Proceedings - IEEE International Conference on Robotics and Automation, 18370–18376. DOI: 10.1109/ICRA57147.2024.10610312

Lecun, Y., Bengio, Y., Hinton, G., 5 2015. Deep learning. Nature 521 (7553), 436–444. DOI: 10.1038/NATURE14539

Papadakis, P., 4 2013. Terrain traversability analysis methods for unmanned ground vehicles: A survey. Engineering Applications of Artificial Intelligence 26 (4), 1373–1385. DOI: 10.1016/J.ENGAPPAI.2013.01.006

Ruetz, F. A., Lawrance, N., Hern´andez, E., Borges, P. V., Peynot, T., 2024. ForestTrav: 3D LiDAR-Only Forest Traversability Estimation for Autonomous Ground Vehicles. IEEE Access 12, 37192–37206. DOI: 10.1109/ACCESS.2024.3373004

Saucedo, M. A., Patel, A., Kanellakis, C., Nikolakopoulos, G., 6 2024. EAT: Environment Agnostic Traversability for reactive navigation. Expert Systems with Applications 244, 122919. DOI: 10.1016/J.ESWA.2023.122919

Seo, J., Kim, T., Kwak, K., Min, J., Shim, I., 2 2023. ScaTE: A Scalable Framework for Self- Supervised Traversability Estimation in Unstructured Environments. IEEE Robotics and Automation Letters 8 (2), 888–895. DOI: 10.1109/LRA.2023.3234768

Sevastopoulos, C., Konstantopoulos, S., 2022. A Survey of Traversability Estimation for Mobile Robots. IEEE Access 10, 96331–96347. DOI: 10.1109/ACCESS.2022.3202545

Sharma, S., Dabbiru, L., Hannis, T., Mason, G., Carruth, D. W., Doude, M., Goodin, C., Hudson, C., Ozier, S., Ball, J. E., Tang, B., 2022. CaT: CAVS Traversability Dataset for Off-Road Autonomous Driving. IEEE Access 10, 24759–24768. DOI: 10.1109/ACCESS.2022.3154419

Shu, Y., Dong, L., Liu, J., Liu, C., Wei, W., 2024. Overview of Terrain TraversabilityEvaluation for Autonomous Robots. Journal of Field Robotics. DOI: 10.1002/ROB.22461;WGROUP:STRING:PUBLICATION

Song, S., Jo, S., 2015. Traversability Classification Using Super-voxel Method in Unstructured Terrain. Advances in Intelligent Systems and Computing 345, 595–604. DOI: 10.1007/978-3-319-16841-8 53

Triest, S., Castro, M. G., Maheshwari, P., Sivaprakasam, M.,Wang,W., Scherer, S., 1 2023. Learning Risk-Aware Costmaps via Inverse Reinforcement Learning for Off-Road Navigation. Proceedings - IEEE International Conference on Robotics and Automation 2023-May, 924–930. DOI: 10.1109/ICRA48891.2023.10161268

Triest, S., Sivaprakasam, M., Aich, S., Fan, D. D., Wang, W., Scherer, S., 2024. Velociraptor: Leveraging Visual Foundation Models for Label-Free, Risk-Aware Off-Road Navigation.

Triest, S., Sivaprakasam, M.,Wang, S. J.,Wang,W., Johnson, A. M., Scherer, S., 5 2022. TartanDrive: A Large-Scale Dataset for Learning Off-Road Dynamics Models. Proceedings - IEEE International Conference on Robotics and Automation, 2546–2552. DOI: 10.1109/ICRA46639.2022.9811648

Vecchio, G., Palazzo, S., Guastella, D. C., Giordano, D., Muscato, G., Spampinato, C., 4 2024. Terrain traversability prediction through self-supervised learning and unsupervised domain adaptation on synthetic data. Autonomous Robots 48 (2), 1–19. DOI: 10.1007/S10514-024-10158-4/FIGURES/14

Visca, M., Kuutti, S., Powell, R., Gao, Y., Fallah, S., 5 2021. Deep Learning Traversability Estimator for Mobile Robots in Unstructured Environments. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 13054 LNAI, 203–213. DOI: 10.1007/978-3-030-89177-0 22

Wijayathunga, L., Rassau, A., Chai, D., 8 2023. Challenges and Solutions for Autonomous Ground Robot Scene Understanding and Navigation in Unstructured Outdoor Environments: A Review. Applied Sciences 2023, Vol. 13, Page 9877 13 (17), 9877. DOI: 10.3390/APP13179877

Xu, C., Zhang, B., Qiu, J., He, Z., 2023. An Unstructured Terrain Traversability Mapping Method Fusing Semantic and Geometric Features. Proceedings of 2023 IEEE International Conference on Unmanned Systems ICUS 2023, 1142–1147. DOI: 10.1109/ICUS58632.2023.10318412

Yoon, H. S., Hwang, J. H., Kim, C., Son, E. I., Yoo, S.W., Seo, S.W., 6 2024. Adaptive Robot Traversability Estimation Based on Self-Supervised Online Continual Learning in Unstructured Environments. IEEE Robotics and Automation Letters 9 (6), 4902–4909. DOI: 10.1109/LRA.2024.3386451

Zhang, B., Li, G., Zhang, J., Bai, X., 12 2024a. A reliable traversability learning method based on human-demonstrated risk cost mapping for mobile robots over uneven terrain. Engineering Applications of Artificial Intelligence 138, 109339. DOI: 10.1016/J.ENGAPPAI.2024.109339

Zhang, H., Li, Z., Zeng, X., Smith, L., Stachowicz, K., Shah, D., Yue, L., Song, Z., Xia, W., Levine, S., Sreenath, K., Liu, Y.-h., 10 2024b. Traversability-Aware Legged Navigation by Learning from Real-World Visual Data.

Zhu, Z., Li, N., Sun, R., Xu, D., Zhao, H., 2020. Off-road Autonomous Vehicles Traversability Analysis and Trajectory Planning Based on Deep Inverse Reinforcement Learning. IEEE Intelligent Vehicles Symposium, Proceedings, 971–977. DOI: 10.1109/IV47402.2020.9304721

Descargas

Publicado

01-09-2025

Número

Sección

Visión por Computador