The use of AI in Traversable Unstructured Environments: A Review
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12098Keywords:
Artificial Intelligence Techniques, Machine Learning, Perception and Sensing, Sensor Data Fusion, Autonomous Mobile Robots, Autonomous Vehicles, Robot navigationAbstract
Autonomous navigation of UGVs is a major challenge when performed in unstructured 3D environments. The irregular and highly dynamic conditions of these areas make it difficult to use conventional methods based on rules or manual models, being necessary a deep analysis of traversability. This paper presents an exhaustive review of the state of the art in AI techniques applied into this field. Different learning paradigms and progression of different architectures are analyzed, examining their advances, limitations and opportunities to achieve a robust autonomous navigation.
References
Ahtiainen, J., Stoyanov, T., Saarinen, J., 5 2017. Normal Distributions Transform Traversability Maps: LIDAR-Only Approach for Traversability Mapping in Outdoor Environments. Journal of Field Robotics 34 (3), 600–621. DOI: 10.1002/ROB.21657
Arena, P., Patanè, L., Taffara, S., 10 2021. Learning risk-mediated traversability maps in unstructured terrains navigation through robot-oriented models. Information Sciences 576, 1–23. DOI: 10.1016/J.INS.2021.06.007
Beycimen, S., Ignatyev, D., Zolotas, A., 11 2023. A comprehensive survey of unmanned ground vehicle terrain traversability for unstructured environments and sensor technology insights. Engineering Science and Technology, an International Journal 47, 101457. DOI: 10.1016/J.JESTCH.2023.101457
Borges, P. V. K., Peynot, T., Liang, S., Arain, B.,Wildie, M., Minareci, M. G., Lichman, S., Samvedi, G., Sa, I., Hudson, N., Milford, M., Moghadam, P., Corke, P., 2022. A Survey on Terrain Traversability Analysis for Autonomous Ground Vehicles: Methods, Sensors, and Challenges. DOI: 10.55417/fr.2022049
Castro, M. G., Triest, S.,Wang,W., Gregory, J. M., Sanchez, F., Rogers, J. G., Scherer, S., 9 2022. How Does It Feel? Self-Supervised Costmap Learning for Off-Road Vehicle Traversability. Proceedings - IEEE International
Conference on Robotics and Automation 2023-May, 931–938. DOI: 10.1109/ICRA48891.2023.10160856
Chavez-Garcia, R. O., Guzzi, J., Gambardella, L. M., Giusti, A., 7 2018. Learning Ground Traversability from Simulations. IEEE Robotics and Automation Letters 3 (3), 1695–1702. DOI: 10.1109/LRA.2018.2801794
Dabbiru, L., Sharma, S., Goodin, C., Ozier, S., Hudson, C. R., Carruth, D. W., Doude, M., Mason, G., Ball, J. E., 4 2021. Traversability mapping in off-road environment using semantic segmentation. https://doi.org/10.1117/12.2587661 11748, 78–83. DOI: 10.1117/12.2587661
Guastella, D. C., Muscato, G., 12 2020. Learning-Based Methods of Perception and Navigation for Ground Vehicles in Unstructured Environments: A Review. Sensors 2021, Vol. 21, Page 73 21 (1), 73. DOI: 10.3390/S21010073
Hirose, N., Sadeghian, A., Vazquez, M., Goebel, P., Savarese, S., 2018. GONet: A Semi-Supervised Deep Learning Approach for Traversability Estimation. IEEE International Conference on Intelligent Robots and Systems, 3044–3051. DOI: 10.1109/IROS.2018.8594031
Huang, T., Wang, G., Liu, H., Luo, J., Wu, L., Zhu, T., Pu, H., Wang, S., 2024. A Framework for Real-time Generation of Multi-directional Traversability Maps in Unstructured Environments. Proceedings - IEEE International Conference on Robotics and Automation, 18370–18376. DOI: 10.1109/ICRA57147.2024.10610312
Lecun, Y., Bengio, Y., Hinton, G., 5 2015. Deep learning. Nature 521 (7553), 436–444. DOI: 10.1038/NATURE14539
Papadakis, P., 4 2013. Terrain traversability analysis methods for unmanned ground vehicles: A survey. Engineering Applications of Artificial Intelligence 26 (4), 1373–1385. DOI: 10.1016/J.ENGAPPAI.2013.01.006
Ruetz, F. A., Lawrance, N., Hern´andez, E., Borges, P. V., Peynot, T., 2024. ForestTrav: 3D LiDAR-Only Forest Traversability Estimation for Autonomous Ground Vehicles. IEEE Access 12, 37192–37206. DOI: 10.1109/ACCESS.2024.3373004
Saucedo, M. A., Patel, A., Kanellakis, C., Nikolakopoulos, G., 6 2024. EAT: Environment Agnostic Traversability for reactive navigation. Expert Systems with Applications 244, 122919. DOI: 10.1016/J.ESWA.2023.122919
Seo, J., Kim, T., Kwak, K., Min, J., Shim, I., 2 2023. ScaTE: A Scalable Framework for Self- Supervised Traversability Estimation in Unstructured Environments. IEEE Robotics and Automation Letters 8 (2), 888–895. DOI: 10.1109/LRA.2023.3234768
Sevastopoulos, C., Konstantopoulos, S., 2022. A Survey of Traversability Estimation for Mobile Robots. IEEE Access 10, 96331–96347. DOI: 10.1109/ACCESS.2022.3202545
Sharma, S., Dabbiru, L., Hannis, T., Mason, G., Carruth, D. W., Doude, M., Goodin, C., Hudson, C., Ozier, S., Ball, J. E., Tang, B., 2022. CaT: CAVS Traversability Dataset for Off-Road Autonomous Driving. IEEE Access 10, 24759–24768. DOI: 10.1109/ACCESS.2022.3154419
Shu, Y., Dong, L., Liu, J., Liu, C., Wei, W., 2024. Overview of Terrain TraversabilityEvaluation for Autonomous Robots. Journal of Field Robotics. DOI: 10.1002/ROB.22461;WGROUP:STRING:PUBLICATION
Song, S., Jo, S., 2015. Traversability Classification Using Super-voxel Method in Unstructured Terrain. Advances in Intelligent Systems and Computing 345, 595–604. DOI: 10.1007/978-3-319-16841-8 53
Triest, S., Castro, M. G., Maheshwari, P., Sivaprakasam, M.,Wang,W., Scherer, S., 1 2023. Learning Risk-Aware Costmaps via Inverse Reinforcement Learning for Off-Road Navigation. Proceedings - IEEE International Conference on Robotics and Automation 2023-May, 924–930. DOI: 10.1109/ICRA48891.2023.10161268
Triest, S., Sivaprakasam, M., Aich, S., Fan, D. D., Wang, W., Scherer, S., 2024. Velociraptor: Leveraging Visual Foundation Models for Label-Free, Risk-Aware Off-Road Navigation.
Triest, S., Sivaprakasam, M.,Wang, S. J.,Wang,W., Johnson, A. M., Scherer, S., 5 2022. TartanDrive: A Large-Scale Dataset for Learning Off-Road Dynamics Models. Proceedings - IEEE International Conference on Robotics and Automation, 2546–2552. DOI: 10.1109/ICRA46639.2022.9811648
Vecchio, G., Palazzo, S., Guastella, D. C., Giordano, D., Muscato, G., Spampinato, C., 4 2024. Terrain traversability prediction through self-supervised learning and unsupervised domain adaptation on synthetic data. Autonomous Robots 48 (2), 1–19. DOI: 10.1007/S10514-024-10158-4/FIGURES/14
Visca, M., Kuutti, S., Powell, R., Gao, Y., Fallah, S., 5 2021. Deep Learning Traversability Estimator for Mobile Robots in Unstructured Environments. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 13054 LNAI, 203–213. DOI: 10.1007/978-3-030-89177-0 22
Wijayathunga, L., Rassau, A., Chai, D., 8 2023. Challenges and Solutions for Autonomous Ground Robot Scene Understanding and Navigation in Unstructured Outdoor Environments: A Review. Applied Sciences 2023, Vol. 13, Page 9877 13 (17), 9877. DOI: 10.3390/APP13179877
Xu, C., Zhang, B., Qiu, J., He, Z., 2023. An Unstructured Terrain Traversability Mapping Method Fusing Semantic and Geometric Features. Proceedings of 2023 IEEE International Conference on Unmanned Systems ICUS 2023, 1142–1147. DOI: 10.1109/ICUS58632.2023.10318412
Yoon, H. S., Hwang, J. H., Kim, C., Son, E. I., Yoo, S.W., Seo, S.W., 6 2024. Adaptive Robot Traversability Estimation Based on Self-Supervised Online Continual Learning in Unstructured Environments. IEEE Robotics and Automation Letters 9 (6), 4902–4909. DOI: 10.1109/LRA.2024.3386451
Zhang, B., Li, G., Zhang, J., Bai, X., 12 2024a. A reliable traversability learning method based on human-demonstrated risk cost mapping for mobile robots over uneven terrain. Engineering Applications of Artificial Intelligence 138, 109339. DOI: 10.1016/J.ENGAPPAI.2024.109339
Zhang, H., Li, Z., Zeng, X., Smith, L., Stachowicz, K., Shah, D., Yue, L., Song, Z., Xia, W., Levine, S., Sreenath, K., Liu, Y.-h., 10 2024b. Traversability-Aware Legged Navigation by Learning from Real-World Visual Data.
Zhu, Z., Li, N., Sun, R., Xu, D., Zhao, H., 2020. Off-road Autonomous Vehicles Traversability Analysis and Trajectory Planning Based on Deep Inverse Reinforcement Learning. IEEE Intelligent Vehicles Symposium, Proceedings, 971–977. DOI: 10.1109/IV47402.2020.9304721
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Alberto Jiménez Hormeño, Arturo de la Escalera Hueso, José Antonio Iglesias Martínez

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.