Comparativa de metodologías de análisis de identificabilidad estructural y observabilidad para modelos no lineales
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12168Palabras clave:
Modelado e identificación, Identificación de sistemas no lineales, Observabilidad, Identificabilidad, Gramianos, Geometría diferencialResumen
La identificabilidad estructural y la observabilidad son propiedades que describen la posibilidad teórica de inferir los parámetros y el estado de un sistema dinámico. En este trabajo consideramos tres metodologías para el análisis de observabilidad e identificabilidad estructural local de modelos no lineales. Una de ellas, la Condición de Rango de Observabilidad, se basa en conceptos de geometría diferencial y puede llevarse a cabo de forma simbólica. Las otras dos son métodos numéricos que usan cálculo de trayectorias; se trata de los gramianos empíricos y el método basado en la matriz de sensibilidades. Los tres métodos cuentan con implementaciones en MATLAB. Mediante la aplicación de estas herramientas a un conjunto amplio de casos de estudio, determinamos sus ventajas e inconvenientes, y proporcionamos recomendaciones para su uso.
Referencias
Balasundaram, B., Borrero, J. S., Pan, H., February 2022. Graph signatures: Identification and optimization. European Journal of Operational Research 296 (3), 764–775.
Chatzis, M. N., Chatzi, E. N., Smyth, A. W., 2015. On the observability and identifiability of nonlinear structural and mechanical systems. Structural Control and Health Monitoring 22 (3), 574–593.
Chis, O.-T., Banga, J. R., Balsa-Canto, E., 2011. Structural identifiability of systems biology models: a critical comparison of methods. PloS one 6 (11), e27755.
Díaz-Seoane, S., Rey Barreiro, X., Villaverde, A. F., 2023. STRIKE-GOLDD 4.0: user-friendly, efficient analysis of structural identifiability and observability. Bioinformatics 39 (1), btac748.
Heinrich, M., Rosenblatt, M., Wieland, F.-G., Stigter, H., Timmer, J., 2025. On structural and practical identifiability: Current status and update of results. Current Opinion in Systems Biology, 100546.
Hermann, R., Krener, A., 1977. Nonlinear controllability and observability. IEEE Transactions on Automatic Control 22 (5), 728–740. Himpe, C., 2018. emgr—the empirical gramian framework. Algorithms 11 (7), 91.
Himpe, C., 2023. emgr–empirical gramian framework version 5.99. ACM Transactions on Mathematical Software 49 (3), 1–8.
Himpe, C., Ohlberger, M., 2013. A unified software framework for empirical gramians. Journal of Mathematics 2013 (1), 365909.
Joubert, D., Stigter, J., Molenaar, J., 2020. An efficient procedure to assist in the re-parametrization of structurally unidentifiable models. Mathematical Biosciens 323, 108328.
Kalman, R. E., 1960. Contributions to the theory of optimal control. Bolet´ın de la Sociedad Matem´atica Mexicana 5 (2), 102–119.
Krener, A. J., Ide, K., December 2009. Measures of unobservability. Proceedings of the 48th IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conferece, 6401–6406.
Lall, S., Marsden, J. E., Glavaˇski, S., 1999. Empirical model reduction of controlled nonlinear systems. IFAC Proceedings Volumes 32 (2), 2598–2603.
Lipniacki, T., Paszek, P., Brasier, A. R., Luxon, B., Kimmel, M., 2004. Mathematical model of nf-κb regulatory module. Journal of theoretical biology 228 (2), 195–215.
Pardo, A., Díaz-Seoane, S., Ionescu, D. A., Papachristodoulou, A., Villaverde, A. F., 2025. Analysing control-theoretic properties of nonlinear synthetic biology circuits. In: 14th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems (DYCOPS 2025). Accepted, preprint available at arXiv:2411.05450.
Raia, V., Schilling, M., B¨ohm, M., Hahn, B., Kowarsch, A., Raue, A., Sticht, C., Bohl, S., Saile, M., Möller, P., et al., 2011. Dynamic mathematical modeling of il13-induced signaling in hodgkin and primary mediastinal b-cell lymphoma allows prediction of therapeutic targets. Cancer research 71 (3), 693–704.
Rey Barreiro, X., Villaverde, A. F., 2023. Benchmarking tools for a priori identifiability analysis. Bioinformatics 39 (2), btad065.
Stigter, J., Joubert, D., 2021. Computing measures of identifiability, observability, and controllability for a dynamic system model with the strucid app. IFAC-PapersOnline 54 (7), 138–143.
Stigter, J. D., Molenaar, J., 2015. A fast algorithm to assess local structural identifiability. Automatica 58, 118–124.
Stigter, J. H., van Willigenburg, L. G., 2025. Model reduction of complex dynamical systems: A sensitivity based approach. IFAC-PapersOnLine 59 (1), 457–462.
Tunali, E., Tarn, T.-J., 1987. New results for identifiability of nonlinear systems. IEEE Transactions on Automatic Control 32 (2), 146–154.
Van Willigenburg, L., Stigter, J., Molenaar, J., 2022. Sensitivity matrices as keys to local structural system properties of large-scale nonlinear systems. Nonlinear Dynamics 107 (3), 2599–2618.
Villaverde, A. F., Barreiro, A., Papachristodoulou, A., 2016. Structural identifiability of dynamic systems biology models. PLoS computational biology 12 (10), e1005153.
Villaverde, A. F., Evans, N. D., Chappell, M. J., Banga, J. R., April 2019. Input-dependent structural identifiability of nonlinear systems. IEEE Control Systems Letters 3 (2), 272–277.
Walter, E., Pronzato, L., 1997. Identification of parametric models from experimental data. Springer.
Wang, L., Qi, J., 2024. Efficient structural parameter identifiability analysis for generator dynamic models. In: 2024 56th North American Power Symposium (NAPS). IEEE, pp. 1–6.
Wieland, F.-G., Hauber, A. L., Rosenblatt, M., T¨onsing, C., Timmer, J., 2021. On structural and practical identifiability. Current Opinion in Systems Biology 25, 60–69.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Dorin Alexandru Ionescu Leoca, Mahmoud Shams Falavarjani, Alejandro F. Villaverde

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.