Comparison of methodologies for structural identifiability and observability analysis of nonlinear models
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12168Keywords:
Identification and modelling, Observability, Identifiability, Gramians, Differential geometryAbstract
Structural identifiability and observability are properties that describe the theoretical possibility of inferring the parameters and state of a dynamical system from the available measurements. In this work, we consider three methodologies for analyzing the local structural observability and identifiability of nonlinear models. One of them, the Observability Rank Condition, is based on differential geometry and is symbolical by nature. The other two methodologies are based on numerical and trajectory calculations to obtain empirical observability Gramians or sensitivity matrices, which can determine structural identifiability and observability under certain conditions. All three methods have implementations in MATLAB. By applying these tools to a broad set of case studies, we determine their advantages and disadvantages and provide recommendations for their use.
References
Balasundaram, B., Borrero, J. S., Pan, H., February 2022. Graph signatures: Identification and optimization. European Journal of Operational Research 296 (3), 764–775.
Chatzis, M. N., Chatzi, E. N., Smyth, A. W., 2015. On the observability and identifiability of nonlinear structural and mechanical systems. Structural Control and Health Monitoring 22 (3), 574–593.
Chis, O.-T., Banga, J. R., Balsa-Canto, E., 2011. Structural identifiability of systems biology models: a critical comparison of methods. PloS one 6 (11), e27755.
Díaz-Seoane, S., Rey Barreiro, X., Villaverde, A. F., 2023. STRIKE-GOLDD 4.0: user-friendly, efficient analysis of structural identifiability and observability. Bioinformatics 39 (1), btac748.
Heinrich, M., Rosenblatt, M., Wieland, F.-G., Stigter, H., Timmer, J., 2025. On structural and practical identifiability: Current status and update of results. Current Opinion in Systems Biology, 100546.
Hermann, R., Krener, A., 1977. Nonlinear controllability and observability. IEEE Transactions on Automatic Control 22 (5), 728–740. Himpe, C., 2018. emgr—the empirical gramian framework. Algorithms 11 (7), 91.
Himpe, C., 2023. emgr–empirical gramian framework version 5.99. ACM Transactions on Mathematical Software 49 (3), 1–8.
Himpe, C., Ohlberger, M., 2013. A unified software framework for empirical gramians. Journal of Mathematics 2013 (1), 365909.
Joubert, D., Stigter, J., Molenaar, J., 2020. An efficient procedure to assist in the re-parametrization of structurally unidentifiable models. Mathematical Biosciens 323, 108328.
Kalman, R. E., 1960. Contributions to the theory of optimal control. Bolet´ın de la Sociedad Matem´atica Mexicana 5 (2), 102–119.
Krener, A. J., Ide, K., December 2009. Measures of unobservability. Proceedings of the 48th IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conferece, 6401–6406.
Lall, S., Marsden, J. E., Glavaˇski, S., 1999. Empirical model reduction of controlled nonlinear systems. IFAC Proceedings Volumes 32 (2), 2598–2603.
Lipniacki, T., Paszek, P., Brasier, A. R., Luxon, B., Kimmel, M., 2004. Mathematical model of nf-κb regulatory module. Journal of theoretical biology 228 (2), 195–215.
Pardo, A., Díaz-Seoane, S., Ionescu, D. A., Papachristodoulou, A., Villaverde, A. F., 2025. Analysing control-theoretic properties of nonlinear synthetic biology circuits. In: 14th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems (DYCOPS 2025). Accepted, preprint available at arXiv:2411.05450.
Raia, V., Schilling, M., B¨ohm, M., Hahn, B., Kowarsch, A., Raue, A., Sticht, C., Bohl, S., Saile, M., Möller, P., et al., 2011. Dynamic mathematical modeling of il13-induced signaling in hodgkin and primary mediastinal b-cell lymphoma allows prediction of therapeutic targets. Cancer research 71 (3), 693–704.
Rey Barreiro, X., Villaverde, A. F., 2023. Benchmarking tools for a priori identifiability analysis. Bioinformatics 39 (2), btad065.
Stigter, J., Joubert, D., 2021. Computing measures of identifiability, observability, and controllability for a dynamic system model with the strucid app. IFAC-PapersOnline 54 (7), 138–143.
Stigter, J. D., Molenaar, J., 2015. A fast algorithm to assess local structural identifiability. Automatica 58, 118–124.
Stigter, J. H., van Willigenburg, L. G., 2025. Model reduction of complex dynamical systems: A sensitivity based approach. IFAC-PapersOnLine 59 (1), 457–462.
Tunali, E., Tarn, T.-J., 1987. New results for identifiability of nonlinear systems. IEEE Transactions on Automatic Control 32 (2), 146–154.
Van Willigenburg, L., Stigter, J., Molenaar, J., 2022. Sensitivity matrices as keys to local structural system properties of large-scale nonlinear systems. Nonlinear Dynamics 107 (3), 2599–2618.
Villaverde, A. F., Barreiro, A., Papachristodoulou, A., 2016. Structural identifiability of dynamic systems biology models. PLoS computational biology 12 (10), e1005153.
Villaverde, A. F., Evans, N. D., Chappell, M. J., Banga, J. R., April 2019. Input-dependent structural identifiability of nonlinear systems. IEEE Control Systems Letters 3 (2), 272–277.
Walter, E., Pronzato, L., 1997. Identification of parametric models from experimental data. Springer.
Wang, L., Qi, J., 2024. Efficient structural parameter identifiability analysis for generator dynamic models. In: 2024 56th North American Power Symposium (NAPS). IEEE, pp. 1–6.
Wieland, F.-G., Hauber, A. L., Rosenblatt, M., T¨onsing, C., Timmer, J., 2021. On structural and practical identifiability. Current Opinion in Systems Biology 25, 60–69.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Dorin Alexandru Ionescu Leoca, Mahmoud Shams Falavarjani, Alejandro F. Villaverde

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.