SCADA basado en software abierto para planta demostrativa de desalación
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12195Palabras clave:
Supervisión de procesos, Control de procesos, Adquisición de datos de sensores remotos, Control y operación óptimos de sistemas de recursos hídricos, Sistemas de instrumentación y controlResumen
La destilación por membranas se presenta como una tecnología con gran potencial para concentrar la salmuera procedente de ósmosis inversa, convirtiendo así a la tecnología de desalación más utilizada en la actualidad en un proceso más sostenible.
Con el fin de optimizar el proceso de concentración de salmueras, es necesario disponer de estrategias de control y un sistema de supervisión adecuado que permita mantener las condiciones de operación estables.
Este trabajo presenta el desarrollo de un sistema de supervisión, control y adquisición de datos (SCADA) de una planta de destilación por membranas a escala demostrativa, ubicado en las instalaciones de la infraestructura Agroconnect de la Universidad de Almería.
En concreto, se propone un sistema SCADA del control regulatorio del caudal de la planta, el cual se encuentra integrado en una red de contenedores Docker basado en software abierto, ofreciendo esto una serie de ventajas en términos de virtualización.
Referencias
Ahmad, N., Baddour, R. E., 2014. A review of sources, effects, disposal methods, and regulations of brine into marine environments. Ocean & coastal management 87, 1–7. DOI: 10.1016/j.ocecoaman.2013.10.020
Alkhudhiri, A., Darwish, N., Hilal, N., 2012. Membrane distillation: A comprehensive review. Desalination 287, 2–18. DOI: 10.1016/j.desal.2011.08.027
Andrés-Mañas, J., Gil, J. D., S´anchez-Molina, J., Berenguel, M., Zaragoza, G., 2025. Operation, control and assessment of a full-scale membrane distillation unit for treating desalination brine in the context of greenhouse production. Journal of Cleaner Production 503, 145186. DOI: 10.1016/j.jclepro.2025.145186
Babayigit, B., Abubaker, M., 2023. Industrial internet of things: A review of improvements over traditional SCADA systems for industrial automation. IEEE Systems Journal 18 (1), 120–133. DOI: 10.1109/JSYST.2023.3270000
Gil, J. D., González, R. A., Sánchez-Molina, J., Berenguel, M., Rodríguez, F., 2024. Reverse osmosis desalination for greenhouse irrigation: Experimental characterization and economic evaluation based on energy hubs. Desalination 574, 117281. DOI: 10.1016/j.desal.2023.117281
Gil, J. D., Roca, L., Ruiz-Aguirre, A., Zaragoza, G., Berenguel, M., 2018. Optimal operation of a solar membrane distillation pilot plant via nonlinear model predictive control. Computers & Chemical Engineering 109, 151–165. DOI: 10.1016/j.compchemeng.2017.11.019
Grafana Labs, 2025. Grafana: The open observability platform. https://grafana.com/, Último acceso: 22 de mayo de 2025.
Ibrahim, M. H., Sayagh, M., Hassan, A. E., 2021. A study of how docker compose is used to compose multi-component systems. Empirical Software Engineering 26, 1–27. DOI: 10.1007/s10664-020-09873-2
Lahti, J. P., Shamsuzzoha, A., Kankaanp¨a¨a, T., 2011. Web-based technologies in power plant automation and SCADA systems: A review and evaluation. In: 2011 IEEE International Conference on Control System, Computing and Engineering. IEEE, pp. 279–284. DOI: 10.1109/ICCSCE.2011.6190491
Martinetti, C. R., Childress, A. E., Cath, T. Y., 2009. High recovery of concentrated ro brines using forward osmosis and membrane distillation. Journal of membrane science 331 (1-2), 31–39. DOI: 10.1016/j.memsci.2009.01.003
Phuyal, S., Bista, D., Izykowski, J., Bista, R., 2020. Design and implementation of cost efficient scada system for industrial automation. International Journal of Engineering and Manufacturing 10 (2), 15. DOI: 10.5815/ijem.2020.02.02
Qasim, M., Badrelzaman, M., Darwish, N. N., Darwish, N. A., Hilal, N., 2019. Reverse osmosis desalination: A state-of-the-art review. Desalination 459, 59–104. DOI: 10.1016/j.desal.2019.02.008
Sánchez, P. S., Vergel, J. D. G., Mañas, J. A. A., Zaragoza, G., Molina, J. A. S., Berenguel, M., 2024. Puesta en funcionamiento, control regulatorio y modelado de métricas de rendimiento de un sistema de destilación por membranas a escala comercial. Jornadas de Automática (45). DOI: 10.17979/ja-cea.2024.45.10776
Shalaby, S., Kabeel, A., Abosheiasha, H., Elfakharany, M., El-Bialy, E., Shama, A., Vidic, R. D., 2022. Membrane distillation driven by solar energy: A review. Journal of Cleaner Production 366, 132949. DOI: 10.1016/j.jclepro.2022.132949
Skogestad, S., Grimholt, C., 2012. The SIMC method for smooth PID controller tuning. PID control in the third millennium: Lessons learned and new approaches, 147–175. DOI: 10.1007/978-1-4471-2425-2 5
Sollfrank, M., Loch, F., Denteneer, S., Vogel-Heuser, B., 2020. Evaluating docker for lightweight virtualization of distributed and time-sensitive applications in industrial automation. IEEE Transactions on Industrial Informatics 17 (5), 3566–3576. DOI: 10.1109/TII.2020.3019907
Viader, G., Casal, O., Lefevre, B., de Arespacochaga, N., Echevarría, C., López, J., Valderrama, C., Cortina, J., 2021. Integration of membrane distillation as volume reduction technology for in-land desalination brines management: Pre-treatments and scaling limitations. Journal of environmental management 289, 112549. DOI: 10.1016/j.jenvman.2021.112549
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Aarón-Raúl Poyatos-Bakker, Antonio Martínez-Roa, Lidia Roca, Patricia Palenzuela, Juan D. Gil

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.