Estimación automática del estrés hídrico en olivar mediante dendrómetros
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12254Palabras clave:
Aprendizaje automático, Procesamiento de señales, Aprendizaje para el control, Modelado de series temporales, Identificación para el control, Reconocimiento de patrones e inteligencia artificial en la agriculturaResumen
En este trabajo se presenta un método de clasificación basado en aprendizaje automático para estimar el nivel de estrés hídrico en plantas a partir de lecturas de variación del diámetro del tronco, registradas mediante dendrómetros. El modelo se valida con datos experimentales de riego deficitario obtenidos en un olivar en Sevilla, Andalucía, durante cinco años. El objetivo es facilitar la integración de las herramientas propuestas en estrategias avanzadas de riego, reduciendo la dependencia de métodos invasivos o hardware costoso.
Referencias
Clark, N. A., Wynne, R. H., Schmoldt, D. L., 2000. A review of past research on dendrometers. Forest Science 46 (4), 570–576. DOI: 10.1093/forestscience/46.4.570
Clonch, C., Huynh, M., Goto, B., Levin, A., Selker, J., Udell, C., 2021. High precision zero-friction magnetic dendrometer. HardwareX 10, e00248. DOI: 10.1016/j.ohx.2021.e00248
Drew, D. M., Downes, G. M., 2009. The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia 27 (2), 159–172. DOI: 10.1016/j.dendro.2009.06.008
English, M., Raja, S. N., 1996. Perspectives on deficit irrigation. Agricultural Water Management 32 (1), 1–14. DOI: 10.1016/S0378-3774(96)01255-3
Fereres, E., Soriano, M. A., 2007. Deficit irrigation for reducing agricultural water use. Journal of experimental botany 58 (2), 147–159. DOI: 10.1093/jxb/erl165
Fernández, J., 2014. Plant-based sensing to monitor water stress: Applicability to commercial orchards. Agricultural water management 142, 99–109. DOI: 10.1016/j.agwat.2014.04.017
Fernández, J., Green, S., Caspari, H., Diaz-Espejo, A., Cuevas, M., 2008. The use of sap flow measurements for scheduling irrigation in olive, apple and asian pear trees and in grapevines. Plant and Soil 305 (1), 91–104. DOI: 10.1007/s11104-007-9348-8
Fernández, J., Perez-Martin, A., Torres-Ruiz, J. M., Cuevas, M. V., Rodriguez-Dominguez, C. M., Elsayed-Farag, S., Morales-Sillero, A., García, J. M., Hernandez-Santana, V., Diaz-Espejo, A., 2013. A regulated deficit irrigation strategy for hedgerow olive orchards with high plant density. Plant and soil 372 (1), 279–295. DOI: 10.1007/s11104-013-1704-2
García-Tejero, I., Jiménez-Bocanegra, J., Martínez, G., Romero, R., Durán-Zuazo, V., Muriel-Fernández, J., 2010. Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard [citrus sinensis (l.) osbeck, cv. salustiano]. Agricultural Water Management 97 (5), 614–622. DOI: 10.1016/j.agwat.2009.12.005
Gleick, P. H., 2003. Water use. Annual review of environment and resources 28 (1), 275–314. DOI: 10.1146/annurev.energy.28.040202.122849
Govender, M., Govender, P., Weiersbye, I., Witkowski, E., Ahmed, F., 2009. Review of commonly used remote sensing and ground-based technologies to measure plant water stress. Water Sa 35 (5). DOI: 10.4314/wsa.v35i5.49201
Kang, Y., Khan, S., Ma, X., 2009. Climate change impacts on crop yield, crop water productivity and food security–a review. Progress in natural Science 19 (12), 1665–1674.
Kummu, M., Ward, P. J., de Moel, H., Varis, O., 2010. Is physical water scarcity a new phenomenon? global assessment of water shortage over the last two millennia. Environmental Research Letters 5 (3), 034006. DOI: 10.1088/1748-9326/5/3/034006
Martínez, E., Rey, B., Fandiño, M., Cancela, J. J., 10 2013. Comparison of two techniques for measuring leaf water potential in vitis vinifera var. albariño. Ciéncia e Técnica Vitivinícola 28, 29–41. Padilla-Díaz, C., Rodriguez-Dominguez, C., Hernandez-Santana, V., Perez- Martin, A., Fernández, J., 2016. Scheduling regulated deficit irrigation in a hedgerow olive orchard from leaf turgor pressure related measurements.
Romero, R., Muriel, J., García, I., de la Peña, D. M., 2012. Research on automatic irrigation control: State of the art and recent results. Agricultural water management 114, 59–66. DOI: 10.1016/j.agwat.2012.06.026
Scholander, P. F., Bradstreet, E. D., Hemmingsen, E., Hammel, H., 1965. Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science 148 (3668), 339–346. DOI: 10.1126/science.148.3668.339
Thénot, F., Méthy, M., Winkel, T., 2002. The photochemical reflectance index (pri) as a water-stress index. International Journal of Remote Sensing 23 (23), 5135–5139. DOI: 10.1080/01431160210163100
Waldburger, T., Walter, A., Cockburn, M., Nasser, H.-R., Monney, P., Hatt, M., Anken, T., 2025. Dendrometer as a water stress indicator for apple trees. Agricultural Water Management 309, 109326. DOI: 10.1016/j.agwat.2025.109326
Zimmermann, D., Reuss, R., Westhoff, M., Gessner, P., Bauer, W., Bamberg, E., Bentrup, F.-W., Zimmermann, U., 2008. A novel, non-invasive, onlinemonitoring, versatile and easy plant-based probe for measuring leaf water status. Journal of experimental botany 59 (11), 3157–3167. DOI: 10.1093/jxb/ern171
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Jaime Palomo, Rafael Romero, María V. Cuevas, Teodoro Álamo, David Muñoz de la Peña

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.