Automatic estimation of water stress in olive groves using dendrometers

Authors

  • Jaime Palomo Universidad de Sevilla
  • Rafael Romero Instituto de Recursos Naturales y Agrobiología (IRNASE-CSIC)
  • María V. Cuevas Instituto de Recursos Naturales y Agrobiología (IRNASE-CSIC)
  • Teodoro Álamo Universidad de Sevilla
  • David Muñoz de la Peña Universidad de Sevilla

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12254

Keywords:

Machine Learning, Signal processing, Learning for control, Time series modelling, Identification for control, Pattern recognition and AI in agriculture

Abstract

This work presents a machine learning-based classification method to estimate plant water stress levels from trunk diameter variation readings recorded using dendrometers. The model is validated with deficit irrigation experimental data collected in an olive tree orchard in Seville, Andalusia, during five years. The goal is to facilitate the integration of the proposed tools into advanced irrigation strategies, reducing reliance on invasive methods or costly hardware.

References

Clark, N. A., Wynne, R. H., Schmoldt, D. L., 2000. A review of past research on dendrometers. Forest Science 46 (4), 570–576. DOI: 10.1093/forestscience/46.4.570

Clonch, C., Huynh, M., Goto, B., Levin, A., Selker, J., Udell, C., 2021. High precision zero-friction magnetic dendrometer. HardwareX 10, e00248. DOI: 10.1016/j.ohx.2021.e00248

Drew, D. M., Downes, G. M., 2009. The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia 27 (2), 159–172. DOI: 10.1016/j.dendro.2009.06.008

English, M., Raja, S. N., 1996. Perspectives on deficit irrigation. Agricultural Water Management 32 (1), 1–14. DOI: 10.1016/S0378-3774(96)01255-3

Fereres, E., Soriano, M. A., 2007. Deficit irrigation for reducing agricultural water use. Journal of experimental botany 58 (2), 147–159. DOI: 10.1093/jxb/erl165

Fernández, J., 2014. Plant-based sensing to monitor water stress: Applicability to commercial orchards. Agricultural water management 142, 99–109. DOI: 10.1016/j.agwat.2014.04.017

Fernández, J., Green, S., Caspari, H., Diaz-Espejo, A., Cuevas, M., 2008. The use of sap flow measurements for scheduling irrigation in olive, apple and asian pear trees and in grapevines. Plant and Soil 305 (1), 91–104. DOI: 10.1007/s11104-007-9348-8

Fernández, J., Perez-Martin, A., Torres-Ruiz, J. M., Cuevas, M. V., Rodriguez-Dominguez, C. M., Elsayed-Farag, S., Morales-Sillero, A., García, J. M., Hernandez-Santana, V., Diaz-Espejo, A., 2013. A regulated deficit irrigation strategy for hedgerow olive orchards with high plant density. Plant and soil 372 (1), 279–295. DOI: 10.1007/s11104-013-1704-2

García-Tejero, I., Jiménez-Bocanegra, J., Martínez, G., Romero, R., Durán-Zuazo, V., Muriel-Fernández, J., 2010. Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard [citrus sinensis (l.) osbeck, cv. salustiano]. Agricultural Water Management 97 (5), 614–622. DOI: 10.1016/j.agwat.2009.12.005

Gleick, P. H., 2003. Water use. Annual review of environment and resources 28 (1), 275–314. DOI: 10.1146/annurev.energy.28.040202.122849

Govender, M., Govender, P., Weiersbye, I., Witkowski, E., Ahmed, F., 2009. Review of commonly used remote sensing and ground-based technologies to measure plant water stress. Water Sa 35 (5). DOI: 10.4314/wsa.v35i5.49201

Kang, Y., Khan, S., Ma, X., 2009. Climate change impacts on crop yield, crop water productivity and food security–a review. Progress in natural Science 19 (12), 1665–1674.

Kummu, M., Ward, P. J., de Moel, H., Varis, O., 2010. Is physical water scarcity a new phenomenon? global assessment of water shortage over the last two millennia. Environmental Research Letters 5 (3), 034006. DOI: 10.1088/1748-9326/5/3/034006

Martínez, E., Rey, B., Fandiño, M., Cancela, J. J., 10 2013. Comparison of two techniques for measuring leaf water potential in vitis vinifera var. albariño. Ciéncia e Técnica Vitivinícola 28, 29–41. Padilla-Díaz, C., Rodriguez-Dominguez, C., Hernandez-Santana, V., Perez- Martin, A., Fernández, J., 2016. Scheduling regulated deficit irrigation in a hedgerow olive orchard from leaf turgor pressure related measurements.

Romero, R., Muriel, J., García, I., de la Peña, D. M., 2012. Research on automatic irrigation control: State of the art and recent results. Agricultural water management 114, 59–66. DOI: 10.1016/j.agwat.2012.06.026

Scholander, P. F., Bradstreet, E. D., Hemmingsen, E., Hammel, H., 1965. Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science 148 (3668), 339–346. DOI: 10.1126/science.148.3668.339

Thénot, F., Méthy, M., Winkel, T., 2002. The photochemical reflectance index (pri) as a water-stress index. International Journal of Remote Sensing 23 (23), 5135–5139. DOI: 10.1080/01431160210163100

Waldburger, T., Walter, A., Cockburn, M., Nasser, H.-R., Monney, P., Hatt, M., Anken, T., 2025. Dendrometer as a water stress indicator for apple trees. Agricultural Water Management 309, 109326. DOI: 10.1016/j.agwat.2025.109326

Zimmermann, D., Reuss, R., Westhoff, M., Gessner, P., Bauer, W., Bamberg, E., Bentrup, F.-W., Zimmermann, U., 2008. A novel, non-invasive, onlinemonitoring, versatile and easy plant-based probe for measuring leaf water status. Journal of experimental botany 59 (11), 3157–3167. DOI: 10.1093/jxb/ern171

Downloads

Published

2025-09-01

Issue

Section

Modelado, Simulación y Optimización