Automatic estimation of water stress in olive groves using dendrometers
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12254Keywords:
Machine Learning, Signal processing, Learning for control, Time series modelling, Identification for control, Pattern recognition and AI in agricultureAbstract
This work presents a machine learning-based classification method to estimate plant water stress levels from trunk diameter variation readings recorded using dendrometers. The model is validated with deficit irrigation experimental data collected in an olive tree orchard in Seville, Andalusia, during five years. The goal is to facilitate the integration of the proposed tools into advanced irrigation strategies, reducing reliance on invasive methods or costly hardware.
References
Clark, N. A., Wynne, R. H., Schmoldt, D. L., 2000. A review of past research on dendrometers. Forest Science 46 (4), 570–576. DOI: 10.1093/forestscience/46.4.570
Clonch, C., Huynh, M., Goto, B., Levin, A., Selker, J., Udell, C., 2021. High precision zero-friction magnetic dendrometer. HardwareX 10, e00248. DOI: 10.1016/j.ohx.2021.e00248
Drew, D. M., Downes, G. M., 2009. The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia 27 (2), 159–172. DOI: 10.1016/j.dendro.2009.06.008
English, M., Raja, S. N., 1996. Perspectives on deficit irrigation. Agricultural Water Management 32 (1), 1–14. DOI: 10.1016/S0378-3774(96)01255-3
Fereres, E., Soriano, M. A., 2007. Deficit irrigation for reducing agricultural water use. Journal of experimental botany 58 (2), 147–159. DOI: 10.1093/jxb/erl165
Fernández, J., 2014. Plant-based sensing to monitor water stress: Applicability to commercial orchards. Agricultural water management 142, 99–109. DOI: 10.1016/j.agwat.2014.04.017
Fernández, J., Green, S., Caspari, H., Diaz-Espejo, A., Cuevas, M., 2008. The use of sap flow measurements for scheduling irrigation in olive, apple and asian pear trees and in grapevines. Plant and Soil 305 (1), 91–104. DOI: 10.1007/s11104-007-9348-8
Fernández, J., Perez-Martin, A., Torres-Ruiz, J. M., Cuevas, M. V., Rodriguez-Dominguez, C. M., Elsayed-Farag, S., Morales-Sillero, A., García, J. M., Hernandez-Santana, V., Diaz-Espejo, A., 2013. A regulated deficit irrigation strategy for hedgerow olive orchards with high plant density. Plant and soil 372 (1), 279–295. DOI: 10.1007/s11104-013-1704-2
García-Tejero, I., Jiménez-Bocanegra, J., Martínez, G., Romero, R., Durán-Zuazo, V., Muriel-Fernández, J., 2010. Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard [citrus sinensis (l.) osbeck, cv. salustiano]. Agricultural Water Management 97 (5), 614–622. DOI: 10.1016/j.agwat.2009.12.005
Gleick, P. H., 2003. Water use. Annual review of environment and resources 28 (1), 275–314. DOI: 10.1146/annurev.energy.28.040202.122849
Govender, M., Govender, P., Weiersbye, I., Witkowski, E., Ahmed, F., 2009. Review of commonly used remote sensing and ground-based technologies to measure plant water stress. Water Sa 35 (5). DOI: 10.4314/wsa.v35i5.49201
Kang, Y., Khan, S., Ma, X., 2009. Climate change impacts on crop yield, crop water productivity and food security–a review. Progress in natural Science 19 (12), 1665–1674.
Kummu, M., Ward, P. J., de Moel, H., Varis, O., 2010. Is physical water scarcity a new phenomenon? global assessment of water shortage over the last two millennia. Environmental Research Letters 5 (3), 034006. DOI: 10.1088/1748-9326/5/3/034006
Martínez, E., Rey, B., Fandiño, M., Cancela, J. J., 10 2013. Comparison of two techniques for measuring leaf water potential in vitis vinifera var. albariño. Ciéncia e Técnica Vitivinícola 28, 29–41. Padilla-Díaz, C., Rodriguez-Dominguez, C., Hernandez-Santana, V., Perez- Martin, A., Fernández, J., 2016. Scheduling regulated deficit irrigation in a hedgerow olive orchard from leaf turgor pressure related measurements.
Romero, R., Muriel, J., García, I., de la Peña, D. M., 2012. Research on automatic irrigation control: State of the art and recent results. Agricultural water management 114, 59–66. DOI: 10.1016/j.agwat.2012.06.026
Scholander, P. F., Bradstreet, E. D., Hemmingsen, E., Hammel, H., 1965. Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science 148 (3668), 339–346. DOI: 10.1126/science.148.3668.339
Thénot, F., Méthy, M., Winkel, T., 2002. The photochemical reflectance index (pri) as a water-stress index. International Journal of Remote Sensing 23 (23), 5135–5139. DOI: 10.1080/01431160210163100
Waldburger, T., Walter, A., Cockburn, M., Nasser, H.-R., Monney, P., Hatt, M., Anken, T., 2025. Dendrometer as a water stress indicator for apple trees. Agricultural Water Management 309, 109326. DOI: 10.1016/j.agwat.2025.109326
Zimmermann, D., Reuss, R., Westhoff, M., Gessner, P., Bauer, W., Bamberg, E., Bentrup, F.-W., Zimmermann, U., 2008. A novel, non-invasive, onlinemonitoring, versatile and easy plant-based probe for measuring leaf water status. Journal of experimental botany 59 (11), 3157–3167. DOI: 10.1093/jxb/ern171
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jaime Palomo, Rafael Romero, María V. Cuevas, Teodoro Álamo, David Muñoz de la Peña

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.