Intelligent trajectory optimization in industrial manipulators by PSO algorithm

Authors

  • Mario Peñacoba Yagüe Universidad de Burgos
  • Jesús Enrique Sierra García Universidad de Burgos
  • Matilde Santos Peñas Universidad Complutense de Madrid

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12051

Keywords:

Industrial Robotics, Trajectory Optimization, Metaheuristic algorithms, Motion planning, Kinematic control

Abstract

This work presents an initial approach toward an intelligent methodology for trajectory optimization in industrial manipulators, based on the metaheuristic algorithm Particle Swarm Optimization (PSO). The evaluation is carried out in a MATLAB simulation environment that incorporates a dynamic model of the robot, including mass, volume, and inertia of the links, as well as obstacle representation and collision detection. Three cost functions are proposed and compared, each considering different physical performance metrics: (i) total trajectory time, (ii) joint effort, estimated through the average and maximum torques applied, and (iii) a weighted combination of both criteria. The optimization follows a staged strategy: it first ensures geometric feasibility by eliminating trajectories with collisions, and then refines the solution by optimizing the physical metrics. The results show that the proposed optimization technique leads to more efficient and realistic trajectories, with higher potential for deployment in demanding industrial environments.

References

Abdor-Sierra, J. A., Merchán-Cruz, E. A., & Rodríguez-Cañizo, R. G. (2022). A comparative analysis of metaheuristic algorithms for solving the inverse kinematics of robot manipulators. Results in Engineering, 16, 100597.

Ekrem, Ö., & Aksoy, B. (2023). Trajectory planning for a 6-axis robotic arm with particle swarm optimization algorithm. Engineering Applications of Artificial Intelligence, 122, 106099.

Grosz, E. A., & Borzan, M. (2025). Modular Robotics Configurator: A MATLAB Model-Based Development Approach. Applied System Innovation, 8(1), 21.

Liu, F., Huang, H., Li, B., & Xi, F. (2021). A parallel learning particle swarm optimizer for inverse kinematics of robotic manipulator. International Journal of Intelligent Systems, 36(10), 6101-6132.

Lu, J., Zou, T., & Jiang, X. (2022). A neural network based approach to inverse kinematics problem for general six-axis robots. Sensors, 22(22), 8909.

MANiBOT. (2023). MANiBOT project. https://manibot-project.eu/

Nonoyama, K., Liu, Z., Fujiwara, T., Alam, M. M., & Nishi, T. (2022). Energy-efficient robot configuration and motion planning using genetic algorithm and particle swarm optimization. Energies, 15(6), 2074.

Peñacoba, M., Bayona, E., Sierra-García, J. E., & Santos, M. (2024). Route Optimization for UVC Disinfection Robot Using Bio-Inspired Metaheuristic Techniques. Biomimetics, 9(12), 744.Able, B. C., 1956.

Peñacoba, M., Sierra-García, J. E., Santos, M., & Mariolis, I. (2023). Path Optimization Using Metaheuristic Techniques for a Surveillance Robot. Applied Sciences, 13(20), 11182

Peñacoba-Yagüe, M., Sierra-García, J.E., Santos-Peñas, M., Ruano, A. (2025). Enhancing Robotic Control Efficiency with MLP-Based Inverse Kinematics: First Approach. In: Aguiar, A.P., Rocha Malonek, P., Pinto, V.H., Fontes, F.A.C.C., Chertovskih, R. (eds) CONTROLO 2024. CONTROLO 2024. Lecture Notes in Electrical Engineering, vol 1325. Springer, Cham. https://doi.org/10.1007/978-3-031-81724-3_51

Priyadarshi, R., & Kumar, R. R. (2025). Evolution of Swarm Intelligence: A Systematic Review of Particle Swarm and Ant Colony Optimization Approaches in Modern Research. Archives of Computational Methods in Engineering, 1-42.

Rascón, R., Flores-Mendoza, A., Moreno-Valenzuela, J., & Aguilar-Avelar, C. (2024). Control para seguimiento de trayectorias cartesianas en robots manipuladores. Revista Iberoamericana de Automática e Informática industrial, 21(3), 252-261.

Sadeghian, Z., Akbari, E., Nematzadeh, H., & Motameni, H. (2025). A review of feature selection methods based on meta-heuristic algorithms. Journal of Experimental & Theoretical Artificial Intelligence, 37(1), 1-51.

Shami, T. M., El-Saleh, A. A., Alswaitti, M., Al-Tashi, Q., Summakieh, M. A., & Mirjalili, S. (2022). Particle swarm optimization: A comprehensive survey. Ieee Access, 10, 10031-10061.

Singh, R., Kukshal, V., & Yadav, V. S. (2021). A review on forward and inverse kinematics of classical serial manipulators. Advances in Engineering Design: Select Proceedings of ICOIED 2020, 417-428.

Yime, E., Saltarén, R. J., & Mckinley, J. A. R. (2023). Análisis dinámico inverso de robots paralelos: Un tutorial con álgebra de Lie. Revista Iberoamericana de Automática e Informática Industrial, 20(4), 327-346.

Yiyang, L., Xi, J., Hongfei, B., Zhining, W., & Liangliang, S. (2021). A general robot inverse kinematics solution method based on improved PSO algorithm. Ieee Access, 9, 32341-32350.

Downloads

Published

2025-09-01

Issue

Section

Control Inteligente