A feedforward approach in individual pitch control of wind turbines

Authors

  • Manuel Lara Ortiz Universidad de Córdoba
  • Mario L. Ruz Ruiz Universidad de Córdoba
  • Francisco Vázquez Serrano Universidad de Córdoba
  • Juan Garrido Jurado Universidad de Córdoba

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12058

Keywords:

Control of renewable energy resources, Process control, Vibration control, Wind turbines, Individual pitch control, Feedforward control

Abstract

To reduce the periodic loads on wind turbine blades, there are individual blade pitch control (IPC) strategies, which add a different component to each blade, complementing the collective blade pitch control (CPC), which regulates the angular speed of the turbine. While these methods significantly reduce blade fatigue compared to CPC, they significantly increase the blade pitch activity, which can damage the actuators. This study addresses this trade-off by proposing an adaptive feedforward IPC that allows the IPC effort to be adjusted, which is difficult in traditional IPC schemes and rarely studied. The trade-off between reducing blade fatigue and increasing pitch effort is analyzed for a 15 MW offshore monopile wind turbine operating in the nominal region. Among the different tunings, the one that stands out is the one where the percentage of fatigue reduction and increase in control effort compared to the CPC is the same, around 16%.

References

Bossanyi, E. A. (2003). Individual Blade Pitch Control for Load Reduction. Wind Energy, 6(2), 119–128. https://doi.org/10.1002/we.76

Hummel, J. I. S., Kober, J., & Mulders, S. P. (2025). Output-constrained individual pitch control methods using the multiblade coordinate transformation: Trading off actuation effort and blade fatigue load reduction for wind turbines. Wind Energy Science Discussions. [preprint]. DOI: 10.5194/wes-2024-153

Jonkman, B. J. (2009). Turbsim User’s Guide: Version 1.50. DOI: 10.2172/965520

Lara, M., Garrido, J., van Wingerden, J.-W., Mulders, S. P., & Vázquez, F. (2023a). Optimization with genetic algorithms of individual pitch control design with and without azimuth offset for wind turbines in the full load region. IFAC-PapersOnLine, 56(2), 342–347. DOI: 10.1016/j.ifacol.2023.10.1591

Lara, M., Mulders, S. P., van Wingerden, J.-W., Vázquez, F., & Garrido, J. (2023b). Analysis of Adaptive Individual Pitch Control Schemes for Blade Fatigue Load Reduction on a 15 MW Wind Turbine. Applied Sciences, 14(1), 183. DOI: 10.3390/app14010183

Lara, M., Vázquez, F., & Garrido, J. (2024a). Decentralized Individual Pitch Control with Inverted Decoupling for Wind Turbines in the Full Load Region. 2024 IEEE 19th Conference on Industrial Electronics and Applications (ICIEA), 1–6.

Lara, M., Vázquez, F., van Wingerden, J.-W., Mulders, S. P., & Garrido, J. (2024b). Multi-Objective Optimization of Individual Pitch Control for Blade Fatigue Load Reductions for a 15 MW Wind Turbine. 2024 European Control Conference (ECC), 669–674. DOI: 10.23919/ECC64448.2024.10590830

Mulders, S. P., Pamososuryo, A. K., Disario, G. E., & Wingerden, J.-W. van. (2019). Analysis and optimal individual pitch control decoupling by inclusion of an azimuth offset in the multiblade coordinate transformation. Wind Energy, 22(3), 341–359. DOI: 10.1002/we.2289

Mulders, S. P., & van Wingerden, J.-W. (2019). On the Importance of the Azimuth Offset in a Combined 1P and 2P SISO IPC Implementation for Wind Turbine Fatigue Load Reductions. 2019 American Control Conference (ACC), 3506–3511. DOI: 10.23919/ACC.2019.8814829

Muñoz-Palomeque, E., Sierra-García, J. E., & Santos, M. (2024). Técnicas de control inteligente para el seguimiento del punto de máxima potencia en turbinas eólicas. Revista Iberoamericana de Automática e Informática Industrial, 21(3), 193–204. DOI: 10.4995/RIAI.2024.21097

Musial, W., Spitsen, P., Duffy, P., Beiter, P., Shields, M., Mulas Hernando, D., Hammond, R., Marquis, M., King, J., & Sathish, S. (2023). Offshore Wind Market Report: 2023 Edition. DOI: 10.2172/2001112

Natarajan, A. (2022). Damage equivalent load synthesis and stochastic extrapolation for fatigue life validation. Wind Energy Science, 7(3), 1171–1181. DOI: 10.5194/wes-7-1171-2022

Niranjan, R., & Ramisetti, S. B. (2022). Insights from detailed numerical investigation of 15 MW offshore semi-submersible wind turbine using aero-hydro-servo-elastic code. Ocean Engineering, 251, 111024. DOI: 10.1016/j.oceaneng.2022.111024

Njiri, J. G., & Söffker, D. (2016). State-of-the-art in wind turbine control: Trends and challenges. Renewable and Sustainable Energy Reviews, 60, 377–393. DOI: 10.1016/j.rser.2016.01.110

NREL. (2019). NREL’s Reference OpenSource Controller (ROSCO) toolbox for wind turbine applications.

NREL. (2023). OpenFAST v3.4.1 documentation. https://openfast.readthedocs.io/en/main/

Downloads

Published

2025-09-01

Issue

Section

Ingeniería de Control