Addressing Thermal Camera Variability for Building Thermal Maps

Authors

  • Eduardo Adán Ruiz Dpto. de Ingeniería E. E. Automática y Comunicaciones, Universidad de Castilla La Mancha. Paseo de la Universidad 4,13071, Ciudad Real, España.
  • Javier Campos Castellanos Dpto. de Ingeniería E. E. Automática y Comunicaciones, Universidad de Castilla La Mancha. Paseo de la Universidad 4,13071, Ciudad Real, España
  • Adolfo Sánchez Hermosell Dpto. de Ingeniería E. E. Automática y Comunicaciones, Universidad de Castilla La Mancha. Paseo de la Universidad 4,13071, Ciudad Real, España.
  • Antonio Adan Oliver Dpto. de Ingeniería E. E. Automática y Comunicaciones, Universidad de Castilla La Mancha. Paseo de la Universidad 4,13071, Ciudad Real, España.

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12061

Keywords:

Perception and sensing, Robot navigation, Programming and vision, Sensor integration and perception

Abstract

The temperature provided by infrared cameras is only an apparent temperature, which should be corrected for multiple factors, including reflected radiation and the emissivity of the observed material. However, the main source of error arises from the camera's own accuracy (or repeatability). This factor, typically ranging between 2% and 5% of the measured value, constitutes the largest error in the measurement process. Although some statistical methods exist to correct this error, they generally entail high computational and time costs. This article proposes a methodology that significantly reduces the residual and random error inherent in thermal cameras, directly improving the quality and consistency of thermal maps composed of multiple thermal images. The method has been successfully tested on a thermal digitization platform comprising a long-range 3D LiDAR and two infrared cameras.

References

Adán, A., Pérez, V., Ramón, A., and Castilla F. J. Correction of Temperature from Infrared Cameras for More Precise As-Is 3D Thermal Models of Buildings. Applied Sciences (Switzerland), vol. 13, no. 11, p. 6779, 2023. https://doi.org/10.3390/app13116779.

Adán, A., López-Rey, A. and Ramón, A.. Robot for thermal monitoring of buildings. Automation in Construction, vol. 154, p. 105009, oct 2023. https://doi.org/10.1016/j.autcon.2023.105009.

Daakir, M.; Zhou, Y.; Pierrot Deseilligny, M.; Thom, C.; Martin, O.; Rupnik, E. Improvement of photogrammetric accuracy by modeling and correcting the thermal effect on camera calibration. ISPRS J. Photogramm. Remote Sens. 2019, 148, 142–155. https://doi.org/10.1016/j.isprsjprs.2018.12.012.

Lin, D.; Maas, H.G.; Westfeld, P.; Budzier, H.; Gerlach, G. An advanced radiometric calibration approach for uncooled thermal cameras. Photogramm. Rec. 2018, 33, 30–48. https://doi.org/10.1111/phor.12216.

Lin, D.; Jarzabek-Rychard, M.; Tong, X.; Maas, H.G. Fusion of thermal imagery with point clouds for building façade thermal attribute mapping. ISPRS J. Photogramm. Remote Sens. 2019, 151, 162–175. https://doi.org/10.1016/j.isprsjprs.2019.03.010.

Malmivirta, T.; Hamberg, J.; Lagerspetz, E.; Li, X.; Peltonen, E.; Flores, H.; Nurmi, P. Hot or not? robust and accurate continuous thermal imaging on FLIR cameras. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications, PerCom 2019, Kyoto, Japan, 11–15 March 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019.

Amanda Ramón, Antonio Adán, Francisco Javier Castilla, Thermal point clouds of buildings: A review, Energy and Buildings, Volume 274, 2022, 112425, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112425.

Xing, L.; Dai, W.; Zhang, Y. Improving displacement measurement accuracy by compensating for camera motion and thermal effect on camera sensor. Mech. Syst. Signal Process. 2022, 167, 108525. https://doi.org/10.1016/j.ymssp.2021.108525.

Teledyne Flir. https://www.flir.es/discover/rd-science/infrared-camera-accuracy-and-uncertainty-in-plain-language/. Consultada 12/04/2024.

Wan, Q.; Brede, B.; Smigaj, M.; Kooistra, L. Factors influencing temperature measurements from miniaturized thermal infrared (Tir) cameras: A laboratory-based approach. Sensors 2021, 21, 8466. https://doi.org/10.3390/s21248466.

Zhou, H.F.; Li, Z.Y.; Lu, L.J.; Ni, Y.Q. Mitigating thermal-induced image drift for videogrammetric technique in support of structural monitoring applications. Struct. Control Health Monit. 2021, 29, e2869. https://doi.org/10.1002/stc.2869.

Downloads

Published

2025-09-01

Issue

Section

Visión por Computador