Evaluation of fall detection by computer vision and radar
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12069Keywords:
Visión por computador, Aprendizaje Profundo, Sensores y actuadores inteligentes, Robots móvil, Detección de caídasAbstract
Falls are the most frequent accident among the elderly and, when they occur at home, nearly 70% of those who fall are unable to get up on their own or seek help immediately. Therefore, automatic fall detection systems are essential to ensure a rapid response, reduce inattention time and improve the quality of life of the elderly. This study compares two approaches for detection in the home environment: a fixed radar system, evaluated in different configurations, and a computer vision-based detector integrated into a mobile robot, whose mobility allows it to cover blind areas without the need for prior calibration. Both systems were tested under controlled conditions, simulating five types of fall in four different locations. This paper presents the results obtained after experimentation, as well as the most suitable contexts for the application of each detection system.
References
Alam, E., Sufian, A., Dutta, P., Leo, M., 2022. Vision-based human fall detection systems using deep learning: A review. Computers in biology and medicine 146, 105626.
Anwary, A. R., Rahman, M. A., Muzahid, A. J. M., Ul Ashraf, A.W., Patwary, M., Hussain, A., 2022. Deep learning enabled fall detection exploiting gait analysis. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC). pp. 4683–4686. DOI: 10.1109/EMBC48229.2022.9871964
Domingo, J. D., Aparicio, R. M., Rodrigo, L. M. G., 2022. Cross validation voting for improving cnn classification in grocery products. IEEE Access 10, 20913–20925.
Gaya-Morey, F. X., Manresa-Yee, C., Buades-Rubio, J. M., 2024. Deep learning for computer vision based activity recognition and fall detection of the elderly: a systematic review. Applied Intelligence 54 (19), 8982–9007.
Hu, S., Cao, S., Toosizadeh, N., Barton, J., Hector, M. G., Fain, M. J., 2024. Radar-based fall detection: A survey [survey]. IEEE robotics & automation magazine 31 (3), 170–185. INE, 2023. Ingevital, 2024. URL: https://ingevital.com/
Maldonado-Bascon, S., Iglesias-Iglesias, C., Mart´ın-Mart´ın, P., Lafuente-Arroyo, S., 2019. Fallen people detection capabilities using assistive robot. Electronics 8 (9), 915. Ministerio de Sanidad, G. d. E., 2025. URL: https://estilosdevidasaludable.sanidad.gob.es/seguridad/caidas/mayores/home.htm
Rao, S., Pramod, N., Paturu, C. K., 2008. People detection in image and video data. In: Proceedings of the 1st ACM workshop on vision networks for behavior analysis. pp. 85–92.
Sánchez-Girón, C., Zalama, E., Gómez-García-Bermejo, J. D.-D., 7 2024. Integración convnext-yolo mediante cvv para detectar caídas en robot social. XLV Jornadas de Automática. DOI: https://doi.org/10.17979/ja-cea.2024.45.10788
Temi, R., 2024. URL: https://www.robotemi.com/product/temi/
Tewari, R. C., Routray, A., Maiti, J., 2024. State-of-the-art radar technology for remote human fall detection: a systematic review of techniques, trends, and challenges. Multimedia Tools and Applications 83 (29), 73717–73775.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Celia Sánchez-Girón, Jaime Duque-Domingo, Jaime Gómez-García-Bermejo, Eduardo Zalama

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.