Simulator for Functionality Validation in Automated Racing Vehicles

Authors

  • Miguel Oroz Universidad de Navarra
  • Alberto Colmenero Fernández Universidad de Navarra
  • Joshué Pérez Rastelli CEIT-Basque Research and Technology Alliance (BRTA)

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12075

Keywords:

Autonomous vehicles, Simulation, Sensor integration and perception, Intelligent transportation systems

Abstract

Automated vehicles represent one of the most innovative and challenging areas within the fields of automotive engineering and automation. Their applications range from urban transportation and highways to high-performance competitions. In this context, virtual validation of functionalities has become a key tool to accelerate development and validate these systems before testing them on real platforms.This work presents MirenaSim, the implementation of a full-loop open-source simulator M. Oroz and A.Colmenero (2025), developed under the MIT license, as a validation tool for Tecnun eRacing’s autonomous racing vehicle. The simulator enables testing and debugging of critical functionalities of the autonomous system—such as trajectory planning, vehicle control, and environment perception—in a safe and reproducible virtual environment. Thanks to this tool, the team has achieved significant progress in the development and reliability of the autonomous system, reducing testing time and improving the quality of some of its most important functionalities.

References

Community, F.-D., 2021. Formula student driverless simulator (fsds). https://github.com/FS-Driverless/Formula-Student-Driverless-Simulator, accedido el 5 demayo de 2025.

Community, G. E., 2014. Godot engine. Motor de videojuegos de código abierto. URL: https://godotengine.org

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V., 2017. Carla: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning. PMLR.

Fischler, M. A., Bolles, R. C., 1981. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24 (6). DOI: 10.1145/358669.358692

FSOCO Team, 2021. Fsoco: Formula student objects in context dataset. https://www.fsoco-dataset.com, dataset público para Formula Student. URL: https://www.fsoco-dataset.com

M. Oroz and A.Colmenero, 2025. Mirena simulator. https://github.com/Tecnun-eRacing/mirena_sim.

Macenski, S., Foote, T., Gerkey, B., Lalancette, C., Woodall, W., May 2022. Robot operating system 2: Design, architecture, and uses in the wild. Science Robotics 7 (66). URL: http://dx.doi.org/10.1126/scirobotics.abm6074 DOI: 10.1126/scirobotics.abm6074

Newman, W. S., 2007. Team case and the 2007 darpa urban challenge. In: Proceedings of the 2007 DARPA Urban Challenge. U´ ltimo acceso: 24 de junio de 2025. URL: https://api.semanticscholar.org/CorpusID:18147969

Perlin, K., 2002. Improving noise. In: ACM Transactions on Graphics (TOG). Vol. 21. ACM.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A., 2025. Ros: an open-source robot operating system. https://github.com/ros/geometry2, U´ ltimo acceso: 24 de junio de 2025.

Racing, A., 2018. Fssim: Formula student simulator. URL: https://github.com/AMZ-Driverless/fssim

Razavikia, S., Amini, A., Daei, S., 2020. Reconstruction of binary shapes from blurred images via hankel-structured low-rank matrix recovery. IEEE Transactions on Image Processing 29. DOI: 10.1109/TIP.2019.2950512

Rusu, R. B., Cousins, S., May 9-13 2011. 3D is here: Point Cloud Library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA). Shanghai, China. DOI: 10.1109/ICRA.2011.5980567

Saillot, M., Michel, D., Zidna, A., 2024. B-spline curve approximation with transformer neural networks. Mathematics and Computers in Simulation 223. URL: https://www.sciencedirect.com/science/article/pii/S0378475424001368 DOI: https://doi.org/10.1016/j.matcom.2024.04.010

Student, E. U. F., 2023. eufs sim: Gazebo simulation for formula student driverless. https://github.com/eufs/eufs_sim, accedido el 5 de mayo de 2025.

Ultralytics, 2020. Yolov5. URL: https://github.com/ultralytics/yolov5

Ultralytics, 2023. Yolov8: Real-time object detection framework. URL: https://github.com/ultralytics/ultralytics

Downloads

Published

2025-09-01

Issue

Section

Modelado, Simulación y Optimización