Application of Large Language Models in glaucoma diagnosis

Authors

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12085

Keywords:

Soporte a la toma de decisiones, Imágenes médicas y procesamiento, Identificación y validación, Formulación de modelos y diseño de experimentos, Procesamiento y sistemas de imágenes biomédicas y médicas

Abstract

This research explores the potential of Visual Large Language-Language Models (Visual LLM) in the diagnosis of glaucoma from retinographies. Specifically, the use of the Visual LLM known as Moondream is analysed. Using transfer learning techniques, the model has been re-trained with retinal images, with the aim of learning to distinguish between healthy eyes and eyes with glaucomatous signs. The designed methodology combines visual feature extraction and textual reasoning, opening new ways for automated clinical interpretation. This work positions Visual LLMs as an attractive option for integrating multimodal Artificial Intelligence in Ophthalmology and improving glaucoma detection.

References

Batista, F. J. F., Diaz-Aleman, T., Sigut, J., Alayon, S., Arnay, R. & Angel-Pereira, D., 2020. RIM-ONE DL: A unified retinal image database for assessing glaucoma using deep learning. Image Analysis & Stereology 39, 161–167. DOI: 10.5566/ias.2346

Brzezinski, D., Stefanowski, J., Susmaga, R. & Szczȩch, I., 2018. Visual-based analysis of classification measures and their properties for class imbalanced problems. Information Sciences 462, 242–261. DOI: 10.1016/j.ins.2018.06.020

Chen, Y., Xu, D. W., Kee Wong, T. Y., Wong, J. & Liu, J., 2015. Glaucoma detection based on deep convolutional neural network. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 715–718. DOI: 10.1109/EMBC.2015.7318462

Fan, R. et al., 2023. Detecting glaucoma from fundus photographs using deep learning without convolutions: Transformer for improved generalization. Ophthalmology Science 3, 100233. DOI: 10.1016/j.xops.2022.100233

Haouli, I.-E., Hariri, W., Seridi-Bouchelaghem, H., 2023. Exploring Vision Transformers for Automated Glaucoma Disease Diagnosis in Fundus Images, in: 2023 International Conference on Decision Aid Sciences and Applications (DASA). pp. 520–524. DOI: 10.1109/DASA59624.2023.10286714

Jonas, J. B., Aung, T., Bourne, R. R., Bron, A. M., Ritch, R. & Panda-Jonas, S., 2017. Glaucoma. The Lancet 390, 2183–2193. DOI: 10.1016/S0140-6736(17)31469-1

Li, L., Xu, M., Liu, H., Li, Y., Wang, X., Jiang, L., Wang, Z., Fan, X., Wang, N., 2020. A Large-Scale Database and a CNN Model for Attention-Based Glaucoma Detection. IEEE Transactions on Medical Imaging 39, 413–424. DOI: 10.1109/TMI.2019.2927226

Mienye, I. D. et al., 2024. A survey of explainable artificial intelligence in healthcare: Concepts, applications, and challenges. Informatics in Medicine Unlocked 51, 101587. DOI: 10.1016/j.imu.2024.101587

Moondream AI, 2024. Moondream.ai. [En línea]. Disponible en: https://moondream.ai/

Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J., 2022. AI in health and medicine. Nature Medicine 28, 31–38. DOI: 10.1038/s41591-021-01614-0

Sallam, A., Gaid, A.S.A., Saif, W.Q.A., Kaid, H.A.S., Abdulkareem, R.A., Ahmed, K.J.A., Saeed, A.Y.A., Radman, A., 2021. Early Detection of Glaucoma using Transfer Learning from Pre-trained CNN Models, in: 2021 International Conference of Technology, Science and Administration (ICTSA). pp. 1–5. DOI: 10.1109/ICTSA52017.2021.9406522

Tan, T., Elangovan, K. & Ting, D., 2024. Fine-tuning large language model (LLM) artificial intelligence chatbots in ophthalmology and LLM-based evaluation using GPT-4. arXiv preprint 2402.10083. DOI: 10.48550/arXiv.2402.10083

Van, M.-H., Verma, P. & Wu, X., 2024. On large visual language models for medical imaging analysis: An empirical study. [En línea]. Disponible en: https://arxiv.org/abs/2402.14162

Vaswani, A. et al., 2023. Attention is all you need. [En línea]. Disponible en: https://arxiv.org/abs/1706.03762

Wang, Y. X., Panda-Jonas, S. & Jonas, J. B., 2021. Optic nerve head anatomy in myopia and glaucoma, including parapapillary zones alpha, beta, gamma and delta: Histology and clinical features. Progress in Retinal and Eye Research 83, 100933. DOI: 10.1016/j.preteyeres.2020.100933

Wassel, M., Hamdi, A. M., Adly, N. & Torki, M., 2022. Vision Transformers based classification for glaucomatous eye condition. In: 26th International Conference on Pattern Recognition (ICPR), pp. 5082–5088. DOI: 10.1109/ICPR56361.2022.9956086

Zhou, J. et al., 2024. Pre-trained multimodal large language model enhances dermatological diagnosis using SkinGPT-4. Nature Communications 15, 5649. DOI: 10.1038/s41467-024-50043-3

Downloads

Published

2025-09-01

Issue

Section

Bioingeniería