Dynamic optimization and control over disinfectant injection flows of a fresh produce washing process in flume tanks

Authors

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12101

Keywords:

Process control, Dynamic optimization, Food safety, Process systems engineering, Post-harvesting and food procesing, Reaction and transport systems, Distributed parameter systems

Abstract

Washing efficiency is essential to ensure the quality and safety of harvested fresh produces. At the industrial scale, this process is commonly carried out in channel-type washing tanks, where the produce is introduced and transported by a continuous water flow to which a disinfectant is added. Spatio-temporal variations in the incoming product flow pose a challenge to the effective implementation of the process. This study addresses the dynamic optimization of the injection flow to minimize the disinfectant dosage, ensuring that the concentration of bacteria in the washing water remains within the ranges considered safe, even when dealing with fluctuations in the amount of incoming product.

References

Abnavi, M. D., Kothapalli, C. R., Munther, D., Srinivasan, P., Oct 2021. Chlorine inactivation of escherichia coli o157:h7 in fresh produce wash process: effectiveness and modeling. International Journal of Food Microbiology 356, 109364. DOI: 10.1016/j.ijfoodmicro.2021.109364

Aiyedun, S. O., Onarinde, B. A., Swainson, M., Dixon, R. A., 2021. Foodborne outbreaks of microbial infection from fresh produce in europe and north america: a systematic review of data from this millennium. International Journal of Food Science & Technology 56 (5), 2215–2223. DOI: https://doi.org/10.1111/ijfs.14884

Cougnon, P., Dochain, D., Guay, M., Perrier, M., 2006. Real-time optimization of a tubular reactor with distributed feed. AIChE Journal 52 (6), 2120–2128. DOI: https://doi.org/10.1002/aic.10799

EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, K., Ordóñez, A. A., Bolton, D., Bover-Cid, S., Chemaly, M., De Cesare, A., Herman, L., Hilbert, F., Lindqvist, R., Nauta, M., Nonno, R., Peixe, L., Ru, G., Simmons, M., Skandamis, P., Suffredini, E., Banach, J., Ottoson, J., Zhou, B., da Silva Fel´ıcio, M. T., Jacxsens, L., Martins, J. L., Messens, W., Allende, A., 2023. Microbiological hazards associated with the use of water in the post-harvest handling and processing operations of fresh and frozen fruits, vegetables and herbs (fffvhs). part 1 (outbreak data analysis, literature review and stakeholder questionnaire). EFSA Journal 21 (11), e08332. DOI: https://doi.org/10.2903/j.efsa.2023.8332

García, M. R., 2008. Identification and real time optimisation in the food processing and biotechnology industries. Ph.d. thesis, Universidade de Vigo.

Gil, M. I., García, M. R., Abadias, M., S´anchez, G., Sampers, I., van Asselt, E., Tudela, J. A., Moreno-Razo, A. S., Vilas, C., Martínez-López, N., Vanmarcke, H., Hernandez, N., Andujar, S., Serrano, V., Sabater, D., Truchado, P., van de Kamer, D., van der Berg, J. P., Safitri, R., Boxman, I., Tuytschaever, T., Vandenbussche, C., Díaz-Reolid, A., Anguera, M., Plaza, P., 2025. Microbiological hazards associated with the use of water in the post-harvest handling and processing operations of fresh and frozen fruits, vegetables and herbs (fffvhs). Tech. Rep. EN-8924, EFSA supporting publication. DOI: 10.2903/sp.efsa.2025.EN-8924

Mokhtari, A., Oryang, D., Chen, Y., Pouillot, R., Van Doren, J., Aug. 2018. A Mathematical Model for Pathogen Cross-Contamination Dynamics during the Postharvest Processing of Leafy Greens. Risk Analysis: An Official Publication of the Society for Risk Analysis 38 (8), 1718–1737. DOI: 10.1111/risa.12960

Moreno-Razo, A., García, M. R., Vilas, C., Apr. 2024. Optimización de las dosificaciones de desinfectante en los inyectores de un tanque de lavado en forma de canal. In: Proceedings of the III CEA Symposium of the Groups: Control Engineering – Modelling, Simulation and Optimization. Vigo, Spain, 10–12 April.

Moreno-Razo, A. S., Martínez-López, M., García, M. R., 2023. Modelado y simulación de la inactivación de patógenos con higienizantes en un tanque de lavado de alimentos operado en continuo y con flujo turbulento. In: XLIV Jornadas de Autom´atica. pp. 429–434. DOI: 10.17979/spudc.9788497498609.429

Munther, D., Luo, Y., Wu, J., Magpantay, F. M. G., Srinivasan, P., Oct. 2015. A mathematical model for pathogen cross-contamination dynamics during produce wash. Food Microbiology 51, 101–107. DOI: 10.1016/j.fm.2015.05.010

Randtke, S., 2009. Chemistry of Aqueous Chlorine. John Wiley & Sons, Ltd, Ch. 2, pp. 68–173. DOI: https://doi.org/10.1002/9780470561331.ch2

Tan, J., Yi, J., Yang, X., Lee, H., Nitin, N., Karwe, M., 2022. Distribution of chlorine sanitizer in a flume tank: Numerical predictions and experimental validation. LWT 155, 112888.

Thomas, G. A., Paradell Gil, T., M¨uller, C. T., Rogers, H. J., Berger, C. N., 2024. From field to plate: How do bacterial enteric pathogens interact with ready-to-eat fruit and vegetables, causing disease outbreaks? Food Microbiology

, 104389. DOI: https://doi.org/10.1016/j.fm.2023.104389

Tudela, J. A., López-Gálvez, F., Allende, A., Gil, M. I., Dec 2019. Chlorination management in commercial fresh produce processing lines. Food Control 106, 106760. DOI: 10.1016/j.foodcont.2019.106760

U.S. Food and Drug Administration, 1998. Guidance for Industry: Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetables.

Vande Wouwer, A., Saucez, P., Vilas, C., 07 2014. Simulation of ODE/PDE models with MATLAB, OCTAVE and SCILAB. Scientific and engineering applications. DOI: 10.1007/978-3-319-06790-2

Downloads

Published

2025-09-01

Issue

Section

Modelado, Simulación y Optimización