Model identification for BlueRov2 Heavy control in Depth Hold Mode
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12112Keywords:
Modelado e identificación de sistemas marinos, Diseño de sistemas de control, Control no lineal, Modelling, Identification and Signal Processing, Control Design, Non-Linear Control Systems, Marine SystemsAbstract
This paper presents the identification of a simple kinematic model focused on the control of a commercial, remotely operated,
open source, customisable vehicle, that has been widely used in latest years, the BlueRov2 Heavy vehicle. In addition, the vehicle
has different modes of operation. Specifically, Depth Hold Mode is used, and the relationship between control inputs and the
velocities they produce in the vehicle is analysed to define the 2D model. Measurements of linear and angular velocities are
obtained from the vehicle’s sensors. The model parameters are identified using the least squares technique. The purpose of this
model is to serve as the basis for a high-level autonomous kinematic control that sends velocity commands that the vehicle can
follow and that is focused on applications where the vehicle has to hold a depth.
References
Aili, A., Ekelund, E., 2016. Model-Based Design, Development and Control of an Underwater Vehicle. Master’s thesis, Link¨oping University, Automatic Control.
Avila, J. P. J., Donha, D. C., Adamowski, J. C., 2013. Experimental model identification of open-frame underwater vehicles. Ocean Engineering 60, 81–94. DOI: 10.1016/j.oceaneng.2012.10.007
BlueRobotics, 2016. Bluerov2: The world’s most affordable high-performance rov. BlueROV2 datasheet. URL: https://bluerobotics.com/store/rov/bluerov2/
Cerrada, C., Chaos, D., Moreno-Salinas, D., Aranda, J., 2025. Modelo cinem´atico para el control del veh´ıculo BlueRov2 Heavy en Modo Estabilizar. In: Simposio CEA de Rob´otica, Bioingenier´ıa, Visi´on Artificial y Autom´atica Marina (RBVM) 2025. pp. 1–6.
Fossen, T. I., 2011. Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Sons, Ltd, United Kingdom. DOI: 10.1002/9781119994138
Knudsen, K. B., Nielsen, M. C., Schjølberg, I., 2019. Deep Learning for Station Keeping of AUVs. In: OCEANS 2019 MTS/IEEE SEATTLE. pp. 1–6. DOI: 10.23919/OCEANS40490.2019.8962598
Macatangay, X., Gabriel, S. A., Hoseinnezhad, R., Fowler, A., Bab-Hadiashar, A., 2024. Machine Learning for Modeling Underwater Vehicle Dynamics: Overview and Insights. IEEE Access 12, 139486–139504. DOI: 10.1109/ACCESS.2024.3464644
Moreno-Salinas, D., Chaos, D., Besada-Portas, E., L´opez-Orozco, J. A., de la Cruz, J. M., Aranda, J., 2013. Semiphysical Modelling of the Nonlinear Dynamics of a Surface Craft with LS-SVM. Mathematical Problems in Engineering 2013, 1–13. DOI: 10.1155/2013/890120
Ortiz-Toro, C. A., Cerrada-Collado, C., Moreno-Salinas, D., Chaos-Garc´ıa, D., Garc´ıa-Su´arez, K. L., Otero, P., Vidal-P´erez, J. M., Luque-Nieto, M. A., V´azquez, A. I., Fraile-Ardanuy, J. J., Negro-Valdecantos, V., Jimenez- Yguacel, E., Aranda-Almansa, J., Zazo-Bello, S., Zufiria, P. J., Magdalena, L., Parras, J., Guti´errez, A., 2024. NauSim: Un simulador de c´odigo abierto para el control, desarrollo y despliegue de drones submarinos. XLV Jornadas de Autom´atica, 1–6. DOI: 10.17979/ja-cea.2024.45.10895
Ridao, P., Tiano, A., El-Fakdi, A., Carreras, M., Zirilli, A., 2004. On the identification of non-linear models of unmanned underwater vehicles. Control Engineering Practice 12, 1483–1499. DOI: 10.1016/j.conengprac.2004.01.004
SNAME, 1950. Nomenclature for Treating the Motion of a Sumerged Body Through a Fluid. Tech. rep., The Society of naval Architects and Marine Engineers, series: Technical and research bulletin Nº 3-47.
Tun, T. T., Huang, L., Preece, M. A., 2023. Development and High-Fidelity Simulation of Trajectory Tracking Control Schemes of a UUV for Fish Net-Pen Visual Inspection in Offshore Aquaculture. IEEE Access 11, 135764–135787. DOI: 10.1109/ACCESS.2023.3337872
Vivekanandan, R., Chang, D., Hollinger, G. A., 2023. Autonomous Underwater Docking using Flow State Estimation and Model Predictive Control. In: 2023 IEEE International Conference on Robotics and Automation (ICRA). pp. 1062–1068. DOI: 10.1109/ICRA48891.2023.10160272
von Benzon, M., Sørensen, F., Liniger, J., Pedersen, S., Klemmensen, S., Schmidt, K., 2021. Integral Sliding Mode Control for a Marine Growth Removing ROV with Water Jet Disturbance. In: 2021 European Control Conference (ECC). pp. 2265–2270. DOI: 10.23919/ECC54610.2021.9655050
Wu, C.-J., 2018. 6-dof modelling and control of a remotely operated vehicle. Ph.D. thesis, Flinders University, College of Science and Engineering.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Cristina Cerrada , Dictino Chaos, David Moreno-Salinas, Joaquín Aranda

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.