Model identification for BlueRov2 Heavy control in Depth Hold Mode

Authors

  • Cristina Cerrada Collado UNED
  • Dictino García UNED
  • David Moreno-Salinas UNED
  • Joaquín Aranda Almansa UNED

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12112

Keywords:

Modelado e identificación de sistemas marinos, Diseño de sistemas de control, Control no lineal, Modelling, Identification and Signal Processing, Control Design, Non-Linear Control Systems, Marine Systems

Abstract

This paper presents the identification of a simple kinematic model focused on the control of a commercial, remotely operated,
open source, customisable vehicle, that has been widely used in latest years, the BlueRov2 Heavy vehicle. In addition, the vehicle
has different modes of operation. Specifically, Depth Hold Mode is used, and the relationship between control inputs and the
velocities they produce in the vehicle is analysed to define the 2D model. Measurements of linear and angular velocities are
obtained from the vehicle’s sensors. The model parameters are identified using the least squares technique. The purpose of this
model is to serve as the basis for a high-level autonomous kinematic control that sends velocity commands that the vehicle can
follow and that is focused on applications where the vehicle has to hold a depth.

References

Aili, A., Ekelund, E., 2016. Model-Based Design, Development and Control of an Underwater Vehicle. Master’s thesis, Link¨oping University, Automatic Control.

Avila, J. P. J., Donha, D. C., Adamowski, J. C., 2013. Experimental model identification of open-frame underwater vehicles. Ocean Engineering 60, 81–94. DOI: 10.1016/j.oceaneng.2012.10.007

BlueRobotics, 2016. Bluerov2: The world’s most affordable high-performance rov. BlueROV2 datasheet. URL: https://bluerobotics.com/store/rov/bluerov2/

Cerrada, C., Chaos, D., Moreno-Salinas, D., Aranda, J., 2025. Modelo cinem´atico para el control del veh´ıculo BlueRov2 Heavy en Modo Estabilizar. In: Simposio CEA de Rob´otica, Bioingenier´ıa, Visi´on Artificial y Autom´atica Marina (RBVM) 2025. pp. 1–6.

Fossen, T. I., 2011. Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Sons, Ltd, United Kingdom. DOI: 10.1002/9781119994138

Knudsen, K. B., Nielsen, M. C., Schjølberg, I., 2019. Deep Learning for Station Keeping of AUVs. In: OCEANS 2019 MTS/IEEE SEATTLE. pp. 1–6. DOI: 10.23919/OCEANS40490.2019.8962598

Macatangay, X., Gabriel, S. A., Hoseinnezhad, R., Fowler, A., Bab-Hadiashar, A., 2024. Machine Learning for Modeling Underwater Vehicle Dynamics: Overview and Insights. IEEE Access 12, 139486–139504. DOI: 10.1109/ACCESS.2024.3464644

Moreno-Salinas, D., Chaos, D., Besada-Portas, E., L´opez-Orozco, J. A., de la Cruz, J. M., Aranda, J., 2013. Semiphysical Modelling of the Nonlinear Dynamics of a Surface Craft with LS-SVM. Mathematical Problems in Engineering 2013, 1–13. DOI: 10.1155/2013/890120

Ortiz-Toro, C. A., Cerrada-Collado, C., Moreno-Salinas, D., Chaos-Garc´ıa, D., Garc´ıa-Su´arez, K. L., Otero, P., Vidal-P´erez, J. M., Luque-Nieto, M. A., V´azquez, A. I., Fraile-Ardanuy, J. J., Negro-Valdecantos, V., Jimenez- Yguacel, E., Aranda-Almansa, J., Zazo-Bello, S., Zufiria, P. J., Magdalena, L., Parras, J., Guti´errez, A., 2024. NauSim: Un simulador de c´odigo abierto para el control, desarrollo y despliegue de drones submarinos. XLV Jornadas de Autom´atica, 1–6. DOI: 10.17979/ja-cea.2024.45.10895

Ridao, P., Tiano, A., El-Fakdi, A., Carreras, M., Zirilli, A., 2004. On the identification of non-linear models of unmanned underwater vehicles. Control Engineering Practice 12, 1483–1499. DOI: 10.1016/j.conengprac.2004.01.004

SNAME, 1950. Nomenclature for Treating the Motion of a Sumerged Body Through a Fluid. Tech. rep., The Society of naval Architects and Marine Engineers, series: Technical and research bulletin Nº 3-47.

Tun, T. T., Huang, L., Preece, M. A., 2023. Development and High-Fidelity Simulation of Trajectory Tracking Control Schemes of a UUV for Fish Net-Pen Visual Inspection in Offshore Aquaculture. IEEE Access 11, 135764–135787. DOI: 10.1109/ACCESS.2023.3337872

Vivekanandan, R., Chang, D., Hollinger, G. A., 2023. Autonomous Underwater Docking using Flow State Estimation and Model Predictive Control. In: 2023 IEEE International Conference on Robotics and Automation (ICRA). pp. 1062–1068. DOI: 10.1109/ICRA48891.2023.10160272

von Benzon, M., Sørensen, F., Liniger, J., Pedersen, S., Klemmensen, S., Schmidt, K., 2021. Integral Sliding Mode Control for a Marine Growth Removing ROV with Water Jet Disturbance. In: 2021 European Control Conference (ECC). pp. 2265–2270. DOI: 10.23919/ECC54610.2021.9655050

Wu, C.-J., 2018. 6-dof modelling and control of a remotely operated vehicle. Ph.D. thesis, Flinders University, College of Science and Engineering.

Downloads

Published

2025-09-01

Issue

Section

Automática Marítima