Automatic hand-eye calibration using markers on a social robot
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12123Keywords:
Perception and sensing, Information and sensor fusion, Embedded robotics, Mobile robots, Robotics technologyAbstract
This paper presents an automated approach for hand-eye calibration between an external camera and a robot base, using an ArUco marker as a shared visual reference. A camera mounted on the robot’s wrist captures an image of the marker, whose relative position is known from the robot’s URDF. Simultaneously, an external camera, arbitrarily placed in the environment, captures another image of the same marker. From these two observations and knowing the transformation between the marker and each camera, the transformation between the external camera and the robot base is estimated. This approach enables accurate alignment of external vision systems with the robot’s reference frame, eliminating the need for manual calibration, facilitating the calculation of the position of an external camera with respect to the robot base.
References
Collins, T., Bartoli, A., 2014. Infinitesimal plane-based pose estimation. International journal of computer vision 109 (3), 252–286.
Garrido-Jurado, S., Mu˜noz-Salinas, R., Madrid-Cuevas, F. J., Mar´ın-Jim´enez, M. J., 2014. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition 47 (6), 2280–2292.
Jiang, J., Luo, X., Luo, Q., Qiao, L., Li, M., 2022. An overview of hand-eye calibration. The International Journal of Advanced Manufacturing Technology 119 (1), 77–97.
Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N., 2021. Fiducial markers for pose estimation: Overview, applications and experimental comparison of the artag, apriltag, aruco and stag markers. Journal of Intelligent & Robotic Systems 101, 1–26.
Lee, T. E., Tremblay, J., To, T., Cheng, J., Mosier, T., Kroemer, O., Fox, D., Birchfield, S., 2020. Camera-to-robot pose estimation from a single image. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 9426–9432.
Li, L., Yang, X., Wang, R., Zhang, X., 2024. Automatic robot hand-eye calibration enabled by learning-based 3d vision. Journal of Intelligent & Robotic Systems 110 (3), 130.
Lu, J., Richter, F., Yip, M. C., 2023. Markerless camera-to-robot pose estimation via self-supervised sim-to-real transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 21296–21306.
Shahria, M. T., Sunny, M. S. H., Zarif, M. I. I., Ghommam, J., Ahamed, S. I., Rahman, M. H., 2022. A comprehensive review of vision-based robotic applications: current state, components, approaches, barriers, and potential solutions. Robotics 11 (6), 139.
Tang, T., Liu, M., Xu, W., Lu, C., 2024. Kalib: Markerless hand-eye calibration with keypoint tracking. arXiv preprint arXiv:2408.10562.
Tremblay, J., Tyree, S., Mosier, T., Birchfield, S., 2020. Indirect object-to-robot pose estimation from an external monocular rgb camera. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 4227–4234.
Yin, Y., Gao, D., Deng, K., Lu, Y., 2024. Vision-based autonomous robots calibration for large-size workspace using aruco map and single camera systems. Precision Engineering 90, 191–204.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Miguel García-Gómez, Jaime Duque-Domingo, Jaime Gómez-García-Bermejo, Eduardo Zalama

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.