Candidate selection using fuzzy logic, NLP, and deep learning techniques

Authors

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12139

Keywords:

Fuzzy logic, Neural networks, Decision making, Machine learning, Artificial intelligence techniques, Natural language processing

Abstract

The evaluation and selection of Curricula Vitae (CVs) is a complex process involving multiple factors. This study presents a model comprising two clearly distinct components. On the one hand, a multi-criteria evaluation and fuzzy selection system based on weights that are automatically calculated according to various characteristics. On the other hand, a natural language processing (NLP) system and a convolutional neural network (CNN), which take as input the output of the previous process and classify CVs according to five criteria. The use of this combined system helps to reduce subjectivity in recruitment decisions and improves the selection of the most suitable candidate for the position. The results obtained were compared against those from the Analytic Hierarchy Process (AHP) and the decisions made by a panel of human resources experts. A sample of over 1,000 CVs was used for this study. The study was conducted using a dataset of over 1000 CVs.

References

Bharadwaj, R., Mahajan, D., Bharsakle, M., Meshram, K., Pujari, H., 2023. Resume analysis using NLP. In: Suma, V., Lorenz, P., Baig, Z. (eds), Inventive Systems and Control, Lecture Notes in Networks and Systems, vol. 672, pp. 551-561, Springer, Singapore. DOI: 10.1007/978-981-99-1624-5_40

Bondielli, A., Marcelloni, F., 2021. On the use of summarization and transformer architectures for profiling résumés. Expert Systems with Applications 184, 115521. DOI: 10.1016/j.eswa.2021.115521

Capiluppi, A., Serebrenik, A., Singer, L., 2013. Assessing technical candidates on the social web. IEEE Software 30, 45-51. DOI: 10.1109/MS.2012.169

Chen, S. -W., Lin, S. C., Chang, K., 2001. Attributed concept maps: fuzzy integration and fuzzy matching. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 31, 842-852. DOI: 10.1109/3477.956047

Fen-Juan, L., Hai-Feng, Y., 2015. Construction research on quality evaluation system of professional training of e-commerce talents. In: Sixth International Conference on Intelligent Systems Design and Engineering Applications (ISDEA), Guiyang, China, pp. 235-238. DOI: 10.1109/ISDEA.2015.67

Fernández, R., 2024. Número de usuarios de LinkedIn a nivel mundial de 2017 a 2025. https://es.statista.com/estadisticas/562054/evolucion-trimestral-del-numero-de-usuarios-de-linkedin-a-nivel-mundial/ (Accedido: 15 de mayo de 2025).

Giri, A., Ravikumar, A., Mote, S., Bharadwaj, R., 2016. Vritthi - a theoretical framework for IT recruitment based on machine learning techniques applied over Twitter, LinkedIn, SPOJ and GitHub profiles. In: International Conference on Data Mining and Advanced Computing (SAPIENCE), Ernakulam, India, pp. 1-7. DOI: 10.1109/SAPIENCE.2016.7684163

Gluga, R., Kay, J., Lever, T., 2013. Foundations for modeling university curricula in terms of multiple learning goal sets. IEEE Transactions on Learning Technologies 6, 25-37. DOI: 10.1109/TLT.2012.17

González-González, C., 2019. Valoración de currículum mediante técnicas de toma de decisiones multicriterio difusas, Trabajo de Fin de Máster en Investigación en Ingeniería de Software y Sistemas Informáticos, Universidad Nacional de Educación a Distancia, Madrid.

Hameed, I. A., 2016. A simplified implementation of interval type-2 fuzzy system and its application in students’ academic evaluation. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, Canada, pp. 650-656. DOI: 10.1109/FUZZ-IEEE.2016.7737748

Harsha, T. M., Moukthika, G. S., Sai, D. S., Pravallika, M. N. R., Anamalamudi, S., Enduri, M., 2022. Automated resume screener using natural language processing (NLP). 6th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, pp. 1772-1777. DOI: 10.1109/ICOEI53556.2022.9777194

Khalid, M. N. A., Yusof, U., Xiang, L., 2016. Model student selection using fuzzy logic reasoning approach. In: International Conference on Advanced Informatics: Concepts, Theory and Application (ICAICTA), Penang, Malaysia, pp. 1-6. DOI: 10.1109/ICAICTA.2016.7803116

Kilgarriff, A., 2003. Thesauruses for natural language processing. In: International Conference on Natural Language Processing and Knowledge Engineering, Beijing, China, pp. 5-13. DOI: 10.1109/NLPKE.2003.1275859

Levano, M., Herrera, O. 2012. Validation strategies of competences in a computer science curriculum. In: 31st International Conference of the Chilean Computer Science Society, Valparaiso, Chile, pp. 9-11. DOI: 10.1109/SCCC.2012.8

Madan, M., Madan, P., 2015. Fuzzy viva assessment process through perceptual computing. In: Annual IEEE India Conference (INDICON), New Delhi, India, pp. 1-6. DOI: 10.1109/INDICON.2015.7443831

Pajares, G., Herrera, P. J., Besada, E., 2021. Aprendizaje profundo. RC Libros Editorial, Madrid.

Saaty, R. W., 1987. The analytic hierarchy process—what it is and how it is used. Mathematical Modelling 9, 161-176. DOI: 10.1016/0270-0255(87)90473-8

Tayal, S., Sharma, T., Singhal, S., Thakur, A., 2024. Resume screening using machine learning. International Journal of Scientific Research in Computer Science, Engineering and Information Technology 10, 602-606. DOI: 10.32628/CSEIT2410275

Thomas, A., Sangeetha, S., 2020. Intelligent sense-enabled lexical search on text documents. In: Bi, Y., Bhatia, R., Kapoor, S. (eds.), Intelligent Systems and Applications, Advances in Intelligent Systems and Computing, vol. 1038, pp. 405-415, Springer, Cham. DOI: 10.1007/978-3-030-29513-4_29

Wosiak, A., 2021. Automated extraction of information from Polish resume documents in the IT recruitment process. Procedia Computer Science 192, 2432-2439. DOI: 10.1016/j.procs.2021.09.012

Yüksel, M., Geban, Ö, 2018. Student performance task assessment using multiple criteria decision making (MCDM) techniques: an application for 9th grade chemistry course. Bartın University Journal of Faculty of Education, 7(3), 874-901. DOI: 10.14686/buefad.400787

Downloads

Published

2025-09-01

Issue

Section

Visión por Computador