Semi-automatic surgical planning system for autonomous robots

Authors

  • Marina Poveda Pérez Unidad Robótica Médica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche
  • Juliana Manrique Córdoba Unidad de Robótica Médica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche https://orcid.org/0000-0002-0684-8534
  • Sergio Lidon Calvo Unidad de Robótica Médica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche https://orcid.org/0009-0002-0291-2874
  • María Brotons López Unidad de Robótica Médica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche
  • Carlos Martorell Llobregat Unidad de Neurocirugía, Hospital General de Elche
  • José María Sabater Navarro Unidad de Robótica Médica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche https://orcid.org/0000-0002-3890-6225

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12148

Keywords:

Surgical planning, Robotics, Path planning, Autonomy of surgical robots

Abstract

This article presents a semi-automated system for the transfer of robotic surgical planning performed in a 2D/3D environment. It allows the position information on the trajectory manually defined by a surgeon to be extended with orientation and velocity information, necessary for its autonomous execution by a surgical robot. The system includes a neural network for the semi-automatic segmentation of liver tissues. To calculate the orientations and velocities of the robot's effector, the system relies on the calculation of normals to the anatomical surface of the segmented organ at each point along the trajectory. The presented solution has been implemented as a software plug-in within the 3D Slicer open-source project and integrated with ROS for transfer to a UR5e robot. Validation has been performed on a liver segment III resection case, and the results show that the system is efficient, accurate, and suitable for use in surgical planning environments.

References

Attanasio, Aleks, Bruno Scaglioni, Elena De Momi, Paolo Fiorini, and Pietro Valdastri. 2021. “Autonomy in Surgical Robotics.” Annual Review of Control, Robotics, and Autonomous Systems 4(1): 651–79. doi:10.1146/annurev-control-062420-090543.

Barron, John O., Danny Orabi, Amika Moro, Cristiano Quintini, Eren Berber, Federico N. Aucejo, Kazunari Sasaki, and Choon-Hyuck D. Kwon. 2022. “Validation of the IWATE Criteria as a Laparoscopic Liver Resection Difficulty Score in a Single North American Cohort.” Surgical Endoscopy 36(5): 3601–9. doi:10.1007/s00464-021-08561-4.

Bilic, Patrick, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaissis, Adi Szeskin, et al. 2023. “The Liver Tumor Segmentation Benchmark (LiTS).” Medical Image Analysis 84: 102680. doi:10.1016/j.media.2022.102680.

Cardoso, Manuel Jorge, Wenqi Li, Richard Brown, Nic Ma, Eric Kerfoot, Yiheng Wang, Benjamin Murrey, et al. 2022. “MONAI: An Open-Source Framework for Deep Learning in Healthcare.” doi:10.48550/arXiv.2211.02701.

Fedorov, Andriy, Reinhard Beichel, Jayashree Kalpathy-Cramer, Julien Finet, Jean-Christophe Fillion-Robin, Sonia Pujol, Christian Bauer, et al. 2012. “3D Slicer as an Image Computing Platform for the Quantitative Imaging Network.” Magnetic Resonance Imaging 30(9): 1323–41. doi:10.1016/j.mri.2012.05.001.

Heimann, T., B. van Ginneken, M.A. Styner, Y. Arzhaeva, V. Aurich, C. Bauer, A. Beck, et al. 2009. “Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets.” IEEE Transactions on Medical Imaging 28(8): 1251–65. doi:10.1109/TMI.2009.2013851.

Islam, Mohammad, Kaleem Khan, and Muhammad Salman Khan. 2021. “Evaluation of Preprocessing Techniques for U-Net Based Automated Liver Segmentation.” doi:10.48550/arXiv.2103.14301.

Mountney, Peter, Danail Stoyanov, and Guang-Zhong Yang. 2010. “Three-Dimensional Tissue Deformation Recovery and Tracking.” IEEE Signal Processing Magazine 27(4): 14–24. doi:10.1109/MSP.2010.936728.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. 2015. “U-Net: Convolutional Networks for Biomedical Image Segmentation.” In , 234–41. doi:10.1007/978-3-319-24574-4_28.

Ungi, Tamas, Andras Lasso, and Gabor Fichtinger. 2016. “Open-Source Platforms for Navigated Image-Guided Interventions.” Medical Image Analysis 33: 181–86. doi:10.1016/j.media.2016.06.011.

Downloads

Published

2025-09-01

Issue

Section

Bioingeniería