Force Control Based on Mechanical Admittance for Robotic Massages

Authors

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12150

Keywords:

Biological and Medical Systems, Computer for Control, Control Design, Human Machine Systems, Mechatronic Systems, Non-Linear Control Systems, Robotics

Abstract

This study presents a robotic massage system based on force control through mechanical admittance, implemented on an Elfin 5 collaborative robot with a force/torque sensor. The modular architecture implemented in ROS 2 integrates trajectory interpolation and force control, which dynamically adjusts the Cartesian position of the end-effector to maintain constant contact force and computes the joint positions via inverse kinematics. Three experimental tests were conducted with a reference force of 4 N, achieving precise force tracking (Emean = 0,49N), though with significant increases when changing subjects (Emean = 0,79N) and speed (Emean = 1,85N). The results demonstrate the system’s potential to maintain the desired force along the Z-axis, while highlighting the need to incorporate realistic skin models and adaptive algorithms, such as reinforcement learning, to improve performance and personalize massage therapy. This work lays the foundation for advanced and safe robotic massage systems, complementing human intervention in physical rehabilitation.

References

Bao, Y., Weng, D., Chen, J., Gao, N., Dongye, X., Su, M., 6 2025. Relaxmr: a mixed reality-based semi-physical high-fidelity digital human massage system. Virtual Reality 29 (2), 1–16. DOI: 10.1007/s10055-025-01133-0

Dong, H., Feng, Y., Qiu, C., Chen, I. M., 2 2023. Construction of Interaction Parallel Manipulator: Towards Rehabilitation Massage. IEEE/ASME Transactions on Mechatronics 28 (1), 372–384. DOI: 10.1109/TMECH.2022.3202694

Hao, C., Han, F., 2012. Review of acupoints positioning and tracking technology for chinese massage robot. Advanced Materials Research 542-543, 741–744. DOI: 10.4028/www.scientific.net/AMR.542-543.741

Harada, N., Akiduki, T., Kitazaki, M., Tasaki, R., 2023. Control Design and Implementation of Robotic Massage Based on Finger Pressing Motion Analysis. In: 2023 8th International Conference on Control and Robotics Engineering, ICCRE 2023. Institute of Electrical and Electronics Engineers Inc., pp. 250–253. DOI: 10.1109/ICCRE57112.2023.10155612

Harada, N., Kitazaki, M., Tasaki, R., 2025. Physical therapy massage robot system with human motion tracking and finger-pressing force control. Advanced Robotics 39 (5), 223–242. DOI: 10.1080/01691864.2025.2469695

Kerautret, Y., Di Rienzo, F., Eyssautier, C., Guillot, A., 12 2020. Selective Effects of Manual Massage and Foam Rolling on Perceived Recovery and Performance: Current Knowledge and Future Directions Toward Robotic Massages. Frontiers in Physiology 11 (598898), 1–38. DOI: 10.3389/fphys.2020.598898

Li, C., Fahmy, A., Li, S., Sienz, J., 6 2020. An Enhanced Robot Massage System in Smart Homes Using Force Sensing and a Dynamic Movement Primitive. Frontiers in Neurorobotics 14 (30), 1–12. DOI: 10.3389/fnbot.2020.00030

Ma, Z., Geng, Y., Nie, S., Yin, F., Ji, H., 1 2024. Research on Chinese Scraping Automation Based on Sensor-Fusion Method. IEEE Sensors Journal 24 (2), 1751–1759. DOI: 10.1109/JSEN.2023.3336220

Mahmood, A. R., Korenkevych, D., Komer, B. J., Bergstra, J., 2018. Setting up a Reinforcement Learning Task with a Real-World Robot. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 4635–4640. DOI: 10.1109/IROS.2018.8593894

Paul, A., Usman, J., Ahmad, M. Y., Hamidreza, M., Maryam, H., Ong, Z. C., Hasikin, K., Lai, K. W., 12 2021. Health efficacy of electrically operated automated massage on muscle properties, peripheral circulation, and physio-psychological variables: a narrative review. DOI: 10.1186/s13634-021-00788-6

Scherzinger, S., Roennau, A., Dillmann, R., 9 2017. Forward Dynamics Compliance Control (FDCC): A New Approach toCartesian Compliance for Robotic Manipulators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Vancouver, BC, Canada, pp. 4568–4575. DOI: 10.1109/IROS.2017.8206325

Tang, X., Shi, P., Luo, Z., Yu, H., 3 2025. A Novel 6-DOF Multi-Technique Abdominal Massage Robot System: A New Solution for Relieving Constipation and an Exploration of Standardization. Electronics 14 (6), 1–29. DOI: 10.3390/electronics14061123

Villani, L., De Schutter, J., 2016. Force Control. In: Springer Handbook of Robotics. Ch. Force Control, pp. 195–219. DOI: 10.1007/978-3-319-32552-1

Xiao, M., Zhang, T., Zou, Y., Chen, S., Wu, W., 2024a. Research on Robot Massage Force Control Based on Residual Reinforcement Learning. IEEE Access 12, 18270–18279. DOI: 10.1109/ACCESS.2023.3347416

Xiao, M., Zhang, T., Zou, Y., Yan, X.,Wu,W., 9 2023. Study on force control for robot massage with a model-based reinforcement learning algorithm. Intelligent Service Robotics 16 (4), 509–519. DOI: 10.1007/s11370-023-00474-6

Xiao, M., Zhang, X., Zhang, T., Chen, S., Zou, Y., Wu, W., 2024b. A study on robot force control based on the GMM/GMR algorithm fusing different compensation strategies. Frontiers in Neurorobotics 18. DOI: 10.3389/fnbot.2024.1290853

Xu, Q., Deng, Z., Zeng, C., Li, Z., He, B., Zhang, J., 6 2024. Toward automatic robotic massage based on interactive trajectory planning and control. Complex and Intelligent Systems 10 (3), 4397–4407. DOI: 10.1007/s40747-024-01384-5

Yang, J., Lim, K. H., Mohabbat, A. B., Fokken, S. C., Johnson, D. E., Calva, J. J., Do, A., Mueller, M. R., Chon, T. Y., Bauer, B. A., 1 2024. Robotics in Massage: A Systematic Review. Health Services Research and Managerial Epidemiology 11, 1–13. DOI: 10.1177/23333928241230948

Downloads

Published

2025-09-01

Issue

Section

Robótica