Trajectory generation for stair interaction in exoskeletons
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12158Keywords:
Avances en medición y procesamiento de señales, Tecnología de asistencia e ingeniería de rehabilitación, Tecnología Robótica, Robots móviles, Análisis e interpretación de bioseñalesAbstract
In the field of lower-limb exoskeletons, extensive research has been conducted on controlling devices to follow reference trajectories similar to human gait. However, to increase functionality and adaptability to different environments, it is necessary to design control algorithms for navigating non-planar surfaces. This article addresses the problem of step interaction, specifically, a method has been developed to generate trajectories that can be implemented in the Exo-H3 exoskeleton from Technaid to ascend, descend backward, and descend forward on a variable-height step. The system generates target trajectories that allow these movements to be performed from recorded reference trajectories. Its validity has been verified for 18 step heights, ranging from 15 to 32 centimeters, collecting data from a 180-centimeter-tall subject.
References
Anam,K., Al-Jumaily, A. A., 2012. Active exoskeleton control systems: State of the art. Procedia Engineering 41, 988–994. DOI: 10.1016/j.proeng.2012.07.273
F. Molteni, G. Gasperini, G. C., Guanziroli, E., 2018. Exoskeleton and end effector robots for upper and lower limbs rehabilitation: Narrative review. PMR10(9), S174–88. DOI: 10.1016/j.pmrj.2018.06.005
Hill, D., 2017. What are user perspectives of exoskeleton technology? a literature review. International Journal of Technology Assessment in Health Care 33:2, 160–167. DOI: 10.1017/S0266462317000460
Hobbs, B., Artemiadis, P., 2020. A review of robot-assisted lower-limb stroke therapy: Unexplored paths and future directions in gait rehabilitation. Frontiers in Neurorobotics 14. DOI: 10.3389/fnbot.2020.00019
Inkol, K. A., McPhee, J., 2020. Assessing control of fixed-support balance recovery in wearable lower-limb exoskeletons using multibody dynamic modelling. In: 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob). pp. 54–60. DOI: 10.1109/BioRob49111.2020.9224430
Leuenberger, K., Gonzenbach, R., Wiedmer, E., Luft, A., Gassert, R., 2014. Classification of stair ascent and descent in stroke patients. In: 2014 11th International Conference on Wearable and Implantable Body Sensor Networks Workshops. pp. 11–16. DOI: 10.1109/BSN.Workshops.2014.10
O’Kane, J. M., 2014. A gentle introduction to ros ISBN: 978-14-92143-23-9.
Quigley, M., Gerkey, B., Smart, W. D., 2015. Programming Robots with ROS: a practical introduction to the Robot Operating System. .O’Reilly Media, Inc.”.
Ruescas Nicolau, A. V., De Rosario, H., Basso Della-Vedova, F., Parrilla Bernab´e, E., Juan, M.-C., L´opez-Pascual, J., 2022. Accuracy of a 3d temporal scanning system for gait analysis: Comparative with a marker-based photogrammetry system. Gait Posture 97, 28–34. DOI: https://doi.org/10.1016/j.gaitpost.2022.07.001
Sadeghi, H., Allard, P., Shafie, K., Mathieu, P. A., Sadeghi, S., Prince, F., Ramsay, J., 2000. Reduction of gait data variability using curve registration. Gait Posture 12 (3), 257–264. DOI: https://doi.org/10.1016/S0966-6362(00)00085-0
Soriano, P. P., Belloch, S. L., 2007. La instrumentaci´ on en la biomec´ánica deportiva. Journal of Human Sport and Exercise 2, 26–41
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jorge Gómez Aguilar, Álvaro Gutiérrez

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.