Augmented reality applied to maintenance for Engineering degrees

Authors

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12159

Keywords:

Control education using laboratory equipment, Virtual and remote labs, Process supervision, Industrial communication protocols, Intelligent maintenance systems, Fault detection and diagnosis

Abstract

This work presents a training practice for engineering degrees based on the use of Augmented Reality (AR) to support supervision and maintenance tasks in a real thermal installation. The activity is developed on the solar air conditioning system of the CIESOL centre, and integrates industrial technologies such as EcoStruxure Augmented Operator Advisor AdvisorTM (AOA) and Node-RED. Students design their own AR application on real images of the plant, select variables of interest via OPC UA, linking contextualised technical documentation and configuring interactive operating procedures. A simulated fault diagnosis activity is also proposed to encourage technical decision making. This work combines skills in instrumentation, automation, advanced visualisation and functional analysis of real systems. It is aimed at engineering subjects related to automation and maintenance, and allows students to interact with real environments through digital industrial solutions, favouring the acquisition of key skills in Industry 4.0 technologies.

References

Álvarez Marín, A., Vélazquez-Iturbide, J., 2021. Augmented reality and engineering education: A systematic review. IEEE Transactions on Learning Technologies 14 (6), 817–831. DOI: 10.1109/TLT.2022.3144356

Donarie-Mardones, S., Barraza Alonso, R., Martínez-Pagán, P., Yepes-Bellver, L., Yepes, V., Martínez-Segura, M., 2024. Innovación educativa con realidad aumentada: Perspectivas en la educación superior en ingeniería. En: Libro de Actas del X Congreso de Innovación Educativa y Docencia en Red. Valencia. DOI: 10.4995/INRED2024.2024.18365

Jiménez-Ruiz, J. A., Castilla, M., Álvarez, J. D., 2022. Desarrollo de una aplicación de adquisición de datos para un sistema de supervisión abierto y escalable en nube vía opc ua. In: XIII Jornadas de Automática: libro de actas. pp. 990–997. DOI: 10.17979/spudc.9788497498418.0900

Liu, C., Zhu, H., Tang, D., Nie, Q., Zhou, T., Wang, L., Song, Y., 2022. Proposing an intelligent predictive maintenance method with deep learning and augmented reality for machine tools in co-enabled manufacturing. Robotics and Computer-Integrated Manufacturing 77, 102357. DOI: 10.1016/j.rcim.2022.102357

Malta, A., Farinha, T., Mendes, M., 2023. Augmented reality in maintenance—history and perspectives. Journal of Imaging 9 (7). DOI: 10.3390/jimaging9070142

Palmirani, R., Erokhoyuz, J. A., Roy, R., Torabmostaedi, H., 2018. A systematic review of augmented reality applications in maintenance. Robotics and Computer-Integrated Manufacturing 49, 215–228. DOI: 10.1016/j.rcim.2017.06.002

Schneider Electric, 2022. EcoStruxure Augmented Operator Advisor Builder - Manual del usuario. Schneider Electric. URL: https://www.se.com

Suhail, N., Bahrun, A., Ahmed, Y., 2024. Augmented reality in engineering education: enhancing learning and application. Frontiers in Virtual Reality 5, 1461145. DOI: 10.3389/frvir.2024.1461145

Downloads

Published

2025-09-01

Issue

Section

Educación en Automática