Onboard Vision System for Detecting Emergency Situations on UAVs
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12169Keywords:
Arquitecturas de computación embebidas, Robótica embebida, Robots voladores, Interacción humano-vehículo, Internet de las Cosas, Algoritmos en tiempo real, Navegación, programación y visión robóticaAbstract
One of the main challenges in embedded systems for Unmanned Aerial Vehicles (UAVs) is executing high-computationalload tasks, such as those using neural networks and computer vision, in real time and autonomously, without relying on external processing. This article proposes a decentralized architecture that enables the implementation of a hand gesture recognition system onboard a drone. Initial results show that, at altitudes of up to 3.5 meters, recognition accuracies of 89% or higher are achieved for gestures such as OK, STOP or SOS (a combination of FOUR and FIST). Additionally, detection times for simple gestures like STOP and OK average no more than 370 milliseconds, demonstrating the system’s efficiency despite the computational demands. These results demonstrate the feasibility of performing real-time recognition tasks onboard a UAV while maintaining computational autonomy and an adequate response time for real-world applications.
References
Fletcher, S., Oostveen, A. M., Chippendale, P., Couceiro, M., Turtiainen, M., & Ballester, L. S. (2023). Developing unmanned aerial robotics to support wild berry harvesting in Finland: Human factors, standards and ethics. En Proceedings of the International Conference on Robot Ethics and Standards (ICRES) (pp. 109–122). Recuperado el 14 de mayo de 2025, de https://clawar.org/icres2023/wp-content/uploads/2024/01/ICRES2023-Proceedings-Manuscript.pdf
geaxgx. (2023). DepthAI hand tracker [Repositorio de código]. GitHub. https://github.com/geaxgx/depthai_hand_tracker
Haas, P. (2024). Developing enhanced drone operations: Enabling gesture recognition with integration of a custom fleet management system based on Rooster [Tesis de máster, Universitat Politècnica de València]. Escuela de Ingeniería Industrial, Valencia, España.
International Organization for Standardization. (2015, septiembre). ISO/TR 22351:2015. Societal security — Emergency management — Message structure for exchange of information (1ª ed.). ISO, Ginebra, Suiza. https://www.iso.org/standard/57384.html
Luxonis. (2025a). OAK-D S2 Fixed-Focus. Recuperado el 15 de mayo de 2025, de https://shop.luxonis.com/products/oak-d-s2?variant=42455432265951
Luxonis. (2025b). RVC2 NN Performance. Recuperado el 15 de mayo de 2025, de https://docs.luxonis.com/hardware/platform/rvc/rvc2/#RVC2%20NN%20Performance
Trybała, P., Morelli, L., Remondino, F., Farrand, L., & Couceiro, M. S. (2024). Under-canopy drone 3D surveys for wild fruit hotspot mapping. Drones, 8(10), Artículo 577. https://doi.org/10.3390/drones8100577
Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka, A., Sung, G., Chang, C., & Grundmann, M. (2020). MediaPipe Hands: On-device real-time hand tracking. arXiv preprint arXiv:2006.10214. https://arxiv.org/abs/2006.10214
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nicole Jiménez Herrera, Laura Smith Ballester, Francisco Blanes Noguera, Juan Carlos Brenes Torres

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.