Onboard Vision System for Detecting Emergency Situations on UAVs

Authors

  • Nicole Jiménez Herrera Instituto Tecnológico de Costa Rica
  • Laura Smith Ballester Universitat Politècnica de València
  • Francisco Blanes Noguera Universitat Politècnica de València
  • Juan Carlos Brenes Torres Instituto Tecnológico de Costa Rica

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12169

Keywords:

Arquitecturas de computación embebidas, Robótica embebida, Robots voladores, Interacción humano-vehículo, Internet de las Cosas, Algoritmos en tiempo real, Navegación, programación y visión robótica

Abstract

One of the main challenges in embedded systems for Unmanned Aerial Vehicles (UAVs) is executing high-computationalload tasks, such as those using neural networks and computer vision, in real time and autonomously, without relying on external processing. This article proposes a decentralized architecture that enables the implementation of a hand gesture recognition system onboard a drone. Initial results show that, at altitudes of up to 3.5 meters, recognition accuracies of 89% or higher are achieved for gestures such as OK, STOP or SOS (a combination of FOUR and FIST). Additionally, detection times for simple gestures like STOP and OK average no more than 370 milliseconds, demonstrating the system’s efficiency despite the computational demands. These results demonstrate the feasibility of performing real-time recognition tasks onboard a UAV while maintaining computational autonomy and an adequate response time for real-world applications.

References

Fletcher, S., Oostveen, A. M., Chippendale, P., Couceiro, M., Turtiainen, M., & Ballester, L. S. (2023). Developing unmanned aerial robotics to support wild berry harvesting in Finland: Human factors, standards and ethics. En Proceedings of the International Conference on Robot Ethics and Standards (ICRES) (pp. 109–122). Recuperado el 14 de mayo de 2025, de https://clawar.org/icres2023/wp-content/uploads/2024/01/ICRES2023-Proceedings-Manuscript.pdf

geaxgx. (2023). DepthAI hand tracker [Repositorio de código]. GitHub. https://github.com/geaxgx/depthai_hand_tracker

Haas, P. (2024). Developing enhanced drone operations: Enabling gesture recognition with integration of a custom fleet management system based on Rooster [Tesis de máster, Universitat Politècnica de València]. Escuela de Ingeniería Industrial, Valencia, España.

International Organization for Standardization. (2015, septiembre). ISO/TR 22351:2015. Societal security — Emergency management — Message structure for exchange of information (1ª ed.). ISO, Ginebra, Suiza. https://www.iso.org/standard/57384.html

Luxonis. (2025a). OAK-D S2 Fixed-Focus. Recuperado el 15 de mayo de 2025, de https://shop.luxonis.com/products/oak-d-s2?variant=42455432265951

Luxonis. (2025b). RVC2 NN Performance. Recuperado el 15 de mayo de 2025, de https://docs.luxonis.com/hardware/platform/rvc/rvc2/#RVC2%20NN%20Performance

Trybała, P., Morelli, L., Remondino, F., Farrand, L., & Couceiro, M. S. (2024). Under-canopy drone 3D surveys for wild fruit hotspot mapping. Drones, 8(10), Artículo 577. https://doi.org/10.3390/drones8100577

Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka, A., Sung, G., Chang, C., & Grundmann, M. (2020). MediaPipe Hands: On-device real-time hand tracking. arXiv preprint arXiv:2006.10214. https://arxiv.org/abs/2006.10214

Downloads

Published

2025-09-01

Issue

Section

Computadores y Control