Supervision and control system for a solar collector field with reflectors

Authors

  • Antonio Martínez-Roa Universidad de Almería
  • Juan Diego Gil Vergel Universidad de Almería
  • Igor Pataro Universidad de Almería
  • Manuel Berenguel Universidad de Almería

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12172

Keywords:

Process supervision, Process Control, Instrumentation and control systems, Remote sensor data acquisition, Control of renewable energy resources, Renewable Energy System Modeling and Integration

Abstract

This work presents the development of a SCADA system (Supervisory, Control, and Data Acquisition) for the supervision and control of a solar thermal field that feeds a membrane distillation plant. The system enables real-time acquisition of operational data, efficient resource management, and interaction with field devices. Its main objective is to provide researchers with accurate data to support the modeling and advanced control of the main variables in future studies. The work includes both the implementation of the SCADA system and the preliminary design and testing of key control loops, such as the reflector position control and the solar field outlet temperature control. All activities are carried out within the Agroconnect experimental infrastructure, located at the IFAPA center in collaboration with the University of Almería.

References

Andrés-Mañas, J. A., Roca, L., Ruiz-Aguirre, A., Acién, F. G., Gil, J. D., Zaragoza, G., 2020. Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation. Applied Energy 258, 114068. DOI: 10.1016/j.apenergy.2019.114068

Asociación Española de Normalización (UNE), 2016. Norma UNE 1063:2016. Caracterización de tuberías. Madrid, España.

Åström, K. J., Hägglund, T., 2006. Advanced PID Control. Vol. 461. ISA - The Instrumentation, Systems, and Automation Society, Research Triangle Park, NC, USA.

Camacho, E. F., Berenguel, M., Rubio, F. R., Martínez, D., 2012. Control of Solar Energy Systems. Springer, London, England. DOI: 10.1007/978-0-85729-916-1

Deac, G. C., Georgescu, C. N., Popa, C. L., Cotet, C. E., Chiscop, F., 2019. New method for sending data to the cloud from an OPC UA client application. Proceedings in Manufacturing Systems 14 (2), 55–60.

Gil, J. D., Roca, L., Zaragoza, G., Normey-Rico, J. E., Berenguel, M., 2020. Hierarchical control for the start-up procedure of solar thermal fields with direct storage. Control Engineering Practice 95, 104254.

González, I., Calderón, A. J., Barragán, A. J., Andújar, J. M., 2017. Integration of sensors, controllers and instruments using a novel OPC architecture. Sensors 17, 1–26. DOI: 10.3390/s17071512

International Society of Automation, 1976. ISA-5.2-1976 (R1992): Binary Logic Diagrams for Process Operations. International Society of Automation, Research Triangle Park, NC, USA.

International Society of Automation, 2024. ANSI/ISA-5.1-2024: Instrumentation Symbols and Identification. International Society of Automation, Research Triangle Park, NC, USA.

Normey-Rico, J. E., Guzman, J. L., Dormido, S., Berenguel, M., Camacho, E. F., 2009. An unified approach for dtc design using interactive tools. Control Engineering Practice 17, 1234–1244. DOI: 10.1016/j.conengprac.2009.05.007

Rodríguez, F., Guzmán, J., Castilla, M., Sánchez-Molina, J., Berenguel, M., 2016. A proposal for teaching SCADA systems using virtual industrial plants in engineering education. IFAC-PapersOnLine 49 (6), 138–143.

Skogestad, S., 2004. Simple analytic rules for model reduction and PID controller tuning. Modeling, Identification and Control 25 (2), 85–120. DOI: 10.4173/mic.2004.2.2

Smith, O. J. M., 1959. A controller to overcome dead time. ISA Journal 6 (2), 28–33.

Downloads

Published

2025-09-01

Issue

Section

Ingeniería de Control