Protection of moving targets using a drone swarm
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12181Keywords:
Autonomous systems, Cooperative navigation, Decentralized Control and Systems, Motion control, Multi-vehicle systemAbstract
An alternative and complementary C-UAS (Counter-Unmanned Air Systems) solution to existing ones is proposed: the use of a swarm of defending drones. These drones adopt a hemispherical shield formation to deny hostile UAS access to the protected target. The key to this strategy lies in the design of a distributed control law that allows defending drones to track trajectories, maintain position, and orient themselves in space while maintaining the shape of the shield a based on the location and speed of the hostile swarm and the target to be defended. Furthermore, the proposed strategy is scalable and adaptable to different sizes of protected areas, from small installations to large geographic regions.
References
Asimow, L. & Roth, B., 1979. The rigidity of graphs, II. Journal of Mathematical Analysis and Applications 68(1), pp. 171-190.
Delaunay, B., 1934. Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk, pp. 793-800.
De Marina, H.G., Cao, M. and Jayawardhana, B., 2014. Controlling rigid formations of mobile agents under inconsistent measurements. IEEE Transactions on Robotics, 31(1), pp.31-39.
Eren, T., Belhumeur, P. N., Anderson, B. D. & Morse, A. S., 2002. A framework for maintaining formations based on rigidity, 2002. IFAC Proceedings Volumes 35(1), 499-504.
Guinaldo, M., Sánchez-Moreno, J., Zaragoza. S, & Mañas-Álvarez, F.J., 2024. Distributed multi-UAV shield formation based on virtual surface constraints. Robotics and Autonomous Systems, 176(104684).
Guinaldo, M., Sánchez-Moreno, J. & Zaragoza, S., 2022. Protección de infraestructuras mediante escudos dinámicos formados por drones. Pontevedra, Ministerio de Defensa.
Hua, Y., Yu, J. & Sun, C., 2024. Distributed Control, Optimization, and Game of UAV Swarm Systems. [En línea] Available at: https://www.mdpi.com/journal/drones/ special_issues/1478YUXR23
Krick, L., Broucke, M. E. & Francis, B. A., 2009. Stabilisation of infinitesimally rigid formations of multi-robot networks. International Journal of Control, 82(3), pp. 423-439.
Lewis, F. L., Hengster-Movric, K., Zhang, H. & Das, A., 2014. Cooperative Control of Multi-Agent Systems. Springer.
Queiroz, M. de, Cai, X. & Feemster, M., 2019, Formation Control of Multi-Agent Systems: A Graph Rigidity Approach, Wiley.
Secretaría de Estado de Defensa, 2020, Estrategia de tecnología e innovación para la Defensa ETID – 2020, https://publicaciones.defensa.gob.es/media/downloadable/files/links/e/t/etid_estrategia_de_tecnolog_a_e_innovaci_n_para_la_defensa_2020.pdf
Su, W., Hu, Y., Li, K., & Chen, L., 2020. Rigidity of similarity-based formation and formation shape stabilization, Automatica 121, 109183.
Sun, Z., Helmke, U. & Anderson, B. D., 2015. Rigid Formation Shape Control in General Dimensions: An Invariance Principle and Open Problems. Proceedings of the 54th IEEE Conference on Decision and Control (CDC 2015), pp. 6095–6100.
Vajravelu, A., Ashok Kumar, N., Sharkar, S. & Degadwala, S., 2023. Security Threats of Unmanned Aerial Vehicles. s.l.:Springer.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Salvador Zaragoza-Noguera, María Guinaldo, José Sánchez-Moreno

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.