Automatic generation of CDPR digital shadow-twin in CoppeliaSim

Authors

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12182

Keywords:

Digital implementation, Motion Control Systems, Programmable logic controllers, Robots manipulators, Robotics technology

Abstract

Generating digital shadows in simulation applications for a cable-driven parallel robot (CDPR) is a time-consuming task, requiring manual calculus of the initial position of the cable anchor points for the different dimensional parameters. This article presents a solution for automatically generating digital shadow twins of CDPRs in order to streamline the development of new configurations and reduce errors caused by manual intervention. The script used for generation extracts the parameters from the controller and constructs, without manual intervention, a virtual model that replicates the CDPR configuration. This provides a safe and quickly configurable environment in which to test trajectories and adjust strategies without the need for a physical robot. Subsequently, a trajectory tracking experiment is performed. The results showed a mean square error of 0.866mm at 100mm/s and 1.841mm at 400mm/s, demonstrating the high fidelity and repeatability of the self-generated digital shadow.

References

Bieber, J., Pallmer, S., Beitelschmidt, M., Nov. 2023. Computationally efficient implementation of the Gauss–Newton method for solving the forward kinematics of redundant cable-driven parallel robots. Proceedings in Applied Mathematics and Mechanics 23 (3). DOI: 10.1002/pamm.202300231

CoppeliaRobotics, Jan. 2025. simZMQ. Coppelia Robotics AG. URL: https://github.com/CoppeliaRobotics/simZMQ

Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W., 2018. Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine 51 (11), 1016–1022. DOI: 10.1016/j.ifacol.2018.08.474

Marcus, S. D., Shapiro, A., Giladi, C., Apr. 2025. Enhancing Quadruped Robot Walking on Unstructured Terrains: A Combination of Stable Blind Gait and Deep Reinforcement Learning. lectronics 14 (7), 1431. DOI: 10.3390/electronics14071431

MathWorks, 2024. xcorr - correlaci´on cruzada (matlab). Accedido el 27 de mayo de 2025. URL: https://es.mathworks.com/help/matlab/ref/xcorr.html

McDonald, E., Beites, S., Arsenault, M., 2022. CDPR Studio: A Parametric Design Tool for Simulating Cable-Suspended Parallel Robots. In: Gerber, D., Pantazis, E., Bogosian, B., Nahmad, A., Miltiadis, C. (Eds.), Computer-Aided Architectural Design. Design Imperatives: The Future Is Now. Vol. 1465. Springer, Singapore, pp. 344–359. DOI: 10.1007/978-981-19-1280-1 22

Moreno, F.-A., Torres, V., Jul. 2024. ArduTC – Un entrenador de bajo coste para TwinCAT. Jornadas de Autom´atica (45). DOI: 10.17979/ja-cea.2024.45.10951

Stefan Lehmann, 2015. Welcome to pyads’s documentation! URL: https://pyads.readthedocs.io/en/latest/index.html

Zake, Z., Caro, S., Roos, A. S., Chaumette, F., Pedemonte, N., 2019. Stability Analysis of Pose-Based Visual Servoing Control of Cable-Driven Parallel Robots. In: Pott, A., Bruckmann, T. (Eds.), Cable-Driven Parallel Robots. Vol. 74. Springer International Publishing, Cham, pp. 73–84. DOI: 10.1007/978-3-030-20751-9 7

Zhang, Z., Shao, Z., You, Z., Tang, X., Zi, B., Yang, G., Gosselin, C., Caro, S., Sep. 2022. State-of-the-art on theories and applications of cable-driven parallel robots. Front. Mech. Eng. 17 (3). DOI: 10.1007/s11465-022-0693-3

Downloads

Published

2025-09-01

Issue

Section

Robótica