Sensorized device for upper limb rehabilitation through serious-games
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12193Keywords:
Instrumentation systems and control, Neurorehabilitation, Graphical user interface, WearablesAbstract
This article presents the development and validation of a sensorized, portable device designed for upper limb rehabilitation through the use of serious games. The system integrates inertial measurement units (IMUs) and surface electromyography (sEMG) sensors to record and analyze the arm’s kinematics and muscular activity. Comprising a portable module (a vest with sensors), a central module (Raspberry Pi and camera), and a software module, the system enables therapy sessions in both clinical and home environments, promoting patient autonomy. Interaction is facilitated through augmented reality-based serious games designed to maintain user motivation. Functional validation tests and trials with patients from a brain injury association confirm the system’s feasibility, although improvements are needed in the EMG sensors as well as in ergonomic and visual aspects. This approach contributes to more accessible, personalized, and effective rehabilitation.
References
Chiri, A., Cortese, M., de Almeida Riberio, P. R., Cempini, M., Vitiello, N., Soekadar, S. R., Carrozza, M. C., 2013. A telerehabilitation system for hand functional training. In: Pons, J. L., Torricelli, D., Pajaro, M. (Eds.),
Converging Clinical and Engineering Research on Neurorehabilitation. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1019–1023.
Evolv Rehabilitation Technologies S.L., 2025. VirtualRehab. https://evolvrehab.com/es/virtualrehab/, accessed: 2025-05-01.
Garcia, G. J., Alepuz, A., Balastegui, G., Bernat, L., Mortes, J., Sanchez, S., Vera, E., Jara, C. A., Morell, V., Pomares, J., Ramon, J. L., Ubeda, A., 2022. Armia: A sensorized arm wearable for motor rehabilitation. Biosensors 12 (7). DOI: 10.3390/bios12070469
Kottink, A. I. R., Van Velsen, L., Wagenaar, J., Buurke, J. H., Dec. 2015. Assessing the gaming experience of a serious exergame for balance problems: Results of a preliminary study. International Conference on Virtual Rehabilitation, ICVR 2015, 135–136. DOI: 10.1109/ICVR.2015.7358614
Krebs, H., Hogan, N., Aisen, M., Volpe, B., 1998. Robot-aided neurorehabilitation. IEEE Transactions on Rehabilitation Engineering 6 (1), 75–87. DOI: 10.1109/86.662623
Levin, M. F., Weiss, P. L., Keshner, E. A., 03 2015. Emergence of virtual reality as a tool for upper limb rehabilitation: Incorporation of motor control and motor learning principles. Physical Therapy 95 (3), 415–425. DOI: 10.2522/ptj.20130579
Lockery, D., Peters, J. F., Ramanna, S., Shay, B. L., Szturm, T., May 2011. Store-and-feedforward adaptive gaming system for hand-finger motion tracking in telerehabilitation. Trans. Info. Tech. Biomed. 15 (3), 467–473. DOI: 10.1109/TITB.2011.2125976
Richardson, R., Brown, M., Bhakta, B., Levesley, M., 11 2003. Design and control of a three degree of freedom pneumatic physiotherapy robot. Robotica 21, 589–604. DOI: 10.1017/S0263574703005320
TECNALIA, 2022. ArmAssist: Robot Assistant for Upper Limb Rehabilitation. https://www.tecnalia.com/en/technological-assets/armassist-robot-assistant-for-upper-limb-rehabilitation, accessed: 2025-05-01.
Zhu, T. L., Klein, J., Dual, S. A., Leong, T. C., Burdet, E., 2014. reachman2: A compact rehabilitation robot to train reaching and manipulation. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 2107–2113. DOI: 10.1109/IROS.2014.6942845
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Aleksandr Talaev, Jonathan Mortes, Anahís Casanova, Pablo Ruiz García, Antonio Rico González, Andrés Úbeda, Carlos A. Jara

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.