Stochastic hybrid systems in the analysis of quantum systems: the Haroche experiment

Authors

  • Aitor Molina Universidad de Murcia
  • Alfonso Baños Universidad de Murcia
  • Juan Ignacio Mulero Universidad Politécnica de Cartagena

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12206

Keywords:

Stochastic hybrid systems, Quantum systems control, Input-output systems, Control Theory, Stability

Abstract

Deterministic and stochastic hybrid systems allow for modeling dynamics that combine continuous evolution with discrete jumps, as is the case of open quantum systems. This work proposes a hybrid formalization of the Haroche experiment, where a photon-field quantum cavity interacts with qubits that are periodically injected and measured. The model captures the cavity’s dynamics through Lindblad master equations, and the jumps associated with injection and measurement decisions via quantum operators. Using a simulation tool developed in MATLAB/Simulink, the system is studied from an input-output perspective, applying classical signals in control theory. Finally, an approach to estimate the number of photons in the cavity via qubit interaction is studied. This study enables the exploration of key properties such as stability, excitation sensitivity, and controllability in quantum systems.

References

Åström, K.~J., y Murray, R.M. (2008). Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press.

Cohen-Tannoudji, C., Diu, B., y Laloë, F. (1977). Quantum Mechanics (Vols. I and II). Wiley-Interscience.

D'Alessandro, D. (2022). Introduction to Quantum Control and Dynamics (2nd ed.). CRC Press.

Goebel, R., Sanfelice, R. G., y Teel, A. R. (2012). Hybrid dynamical systems: Modeling, stability, and robustness. Princeton University Press.

Haroche, S. y Raimond, J. M. (2013). Bohr’s legacy in cavity QED. En Niels Bohr, 1913–2013: Poincaré Seminar 2013, pp. 291–316. Springer International Publishing.

Huang, K. (1987). Statistical Mechanics (2nd ed.). Wiley.

Korsch, H.J. (2019). Lindblad dynamics of the damped and forced quantum harmonic oscillator. arXiv preprint arXiv:1908.01187v2. url{https://arxiv.org/abs/1908.01187v2}

Mandl, F., y Shaw, G. (2010). textit{Quantum Field Theory} (2nd ed.). Wiley.

Sáez, J. F., Baños, A., y Arenas, A. (2025). Hybrid control of MISO systems with delays. ISA Transactions, 161, 216–227.

Teel, A. R. (2013). Lyapunov conditions certifying stability and recurrence for a class of stochastic hybrid systems. Nonlinear Analysis and Hybrid Systems, 37(1), 1–24.

Teel, A. R., Subbaraman, A., y Sferlazza, A. (2014). Stability analysis for stochastic hybrid systems: A survey. Automatica, 50(10), 2435–2456. url{https://doi.org/10.1016/j.automatica.2014.08.006}

Weidner, C. A., Reed, E. A., Monroe, J., Sheller, B., O’Neil, S., Maas, E. A., Jonckheere, E. A., Langbein, F. C., y Schirmer, S. (2025). Robust quantum control in closed and open systems: Theory and practice. Automatica, 172:111987. url{https://doi.org/10.1016/j.automatica.2024.111987}

Downloads

Published

2025-09-01

Issue

Section

Ingeniería de Control